Difference between revisions of "Team:EPFL"

 
(7 intermediate revisions by 2 users not shown)
Line 5: Line 5:
  
 
   <main>
 
   <main>
 +
  
  
Line 17: Line 18:
 
               <p class="lead text-white lh-180">CAncer PersOnalized Encapsulin Immunotherapy and Relapse Assay</p>
 
               <p class="lead text-white lh-180">CAncer PersOnalized Encapsulin Immunotherapy and Relapse Assay</p>
  
              <a href="#CAP" class="btn btn-white btn-circle btn-translate--hover btn-icon mr-sm-4 scroll-me">
+
                          <a href="https://2018.igem.org/Team:EPFL/Description" class="btn btn-white btn-circle btn-translate--hover btn-icon mr-sm-4 scroll-me">
 +
 
 
                                       <span class="btn-inner--text">Learn more about our project</span>
 
                                       <span class="btn-inner--text">Learn more about our project</span>
 
                                       <span class="btn-inner--icon"><i class="fas fa-angle-right"></i></span>
 
                                       <span class="btn-inner--icon"><i class="fas fa-angle-right"></i></span>
Line 34: Line 36:
 
       </div>
 
       </div>
 
     </section>
 
     </section>
 +
 +
 +
 +
  
 
     <section class="slice slice-xl bg-primary" id="CAP">
 
     <section class="slice slice-xl bg-primary" id="CAP">
Line 44: Line 50:
 
                 “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance.
 
                 “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance.
 
                 First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments
 
                 First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments
                 presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger T-cells’ attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential
+
                 presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential
 
                 relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to fight back!
 
                 relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to fight back!
         
+
 
 
               </p>
 
               </p>
 
             </div>
 
             </div>
Line 109: Line 115:
 
               <h2 class="text-center"><font size="+2">Dendritic cell Activation</font></h2>
 
               <h2 class="text-center"><font size="+2">Dendritic cell Activation</font></h2>
 
               <p class="lead text-gray my-4 text-center">
 
               <p class="lead text-gray my-4 text-center">
                 <font size="+2">This encapsulin vaccine activates dendritic cells which trigger T-cell's attack on the neoantigen bearing cancer cells</font>
+
                 <font size="+2">This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen bearing cancer cells</font>
 
               </p>
 
               </p>
 
             </div>
 
             </div>
Line 130: Line 136:
 
         </div>
 
         </div>
  
 
+
<hr style="height:2px;border:none;color:#333;background-color:#333;" >
 
       </div>
 
       </div>
 +
 +
 +
 +
      <section class="slice slice-xl bg-cover bg-size--cover" style="background-image: url('https://static.igem.org/mediawiki/2018/4/4f/T--EPFL--TeamPage.jpeg'); background-position: center top;">
 +
          <div class="container">
 +
              <div class="row justify-content-center">
 +
                  <div class="col-lg-9">
 +
                      <div class="text-center">
 +
                          <h2 class="heading h1 text-white"> </br> </br> </br> Won: <span>Gold Medal</span></br> Nominated for: <span>Best Therapeutic Project</span> and <span>Best Software</br></ul></ui></h2>
 +
                          <div class="btn-container mt-5">
 +
                              <a href="https://2018.igem.org/Team:EPFL/Awards" class="btn btn-white btn-primary btn-circle px-5">Our Awards!</a>
 +
                          </div>
 +
                      </div>
 +
                  </div>
 +
              </div>
 +
          </div>
 +
      </section>
 
       <div class="container">
 
       <div class="container">
  

Latest revision as of 00:21, 8 December 2018

iGEM EPFL 2018

CAPOEIRA

CAncer PersOnalized Encapsulin Immunotherapy and Relapse Assay

Learn more about our project

What is CAPOEIRA ?

While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance. First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to fight back!


This is CAPOEIRA

Bioinformatics

First, a bioinformatic pipeline integrating state-of-the-art tools identifies our target: melonoma neoantigens, the fingerprints of cancer cells


Vaccine

Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes

Dendritic cell Activation

This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen bearing cancer cells

Follow-up

Nevertheless, we don't underestimate a defeated villain! To detect potential relapse we use techniques like CRISPR-Cas12a to detect circulationg tumor miRNA and DNA





Won: Gold Medal
Nominated for: Best Therapeutic Project and Best Software