(78 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | {{EPFL/ | + | {{EPFL/Header}} |
<html> | <html> | ||
+ | <body> | ||
− | < | + | <main> |
− | + | ||
− | |||
− | |||
− | < | + | <!-- Spotlight --> |
+ | <section class="slice slice-xl bg-dark"> | ||
+ | <div class="container"> | ||
+ | <div class="row row-grid align-items-center"> | ||
+ | <div class="col-lg-5"> | ||
+ | <div class="pt-lg-lg pb-lg-sm text-center text-lg-left"> | ||
+ | <h2 class="h1 text-white mb-3">CAPOEIRA</h2> | ||
+ | <p class="lead text-white lh-180">CAncer PersOnalized Encapsulin Immunotherapy and Relapse Assay</p> | ||
− | < | + | <a href="https://2018.igem.org/Team:EPFL/Description" class="btn btn-white btn-circle btn-translate--hover btn-icon mr-sm-4 scroll-me"> |
− | + | ||
− | + | ||
+ | <span class="btn-inner--text">Learn more about our project</span> | ||
+ | <span class="btn-inner--icon"><i class="fas fa-angle-right"></i></span> | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="col-lg-6 ml-lg-auto text-center"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/b/b0/T--EPFL--LOGO_INVERT.png" style="width: 300px;"> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="shape-container" data-shape-style="curve" data-shape-position="bottom"> | ||
+ | <svg class="shape-fill-primary" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1000 100" preserveAspectRatio="none"> | ||
+ | <path d="M 0 0 c 0 0 200 50 500 50 s 500 -50 500 -50 v 101 h -1000 v -100 z"></path> | ||
+ | </svg> | ||
+ | </div> | ||
+ | </section> | ||
− | |||
− | |||
− | < | + | <section class="slice slice-xl bg-primary" id="CAP"> |
+ | <div class="container"> | ||
+ | <div class="row row-grid align-items-center"> | ||
+ | <div class="col-lg-12"> | ||
+ | <div class="pr-md-4"> | ||
+ | <h3 class="heading h3 text-white text-center"><font size="+2">What is CAPOEIRA ?</font></h2> | ||
+ | <p class="lead text-white my-4">While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project | ||
+ | “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance. | ||
+ | First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments | ||
+ | presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential | ||
+ | relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to fight back! | ||
− | + | </p> | |
− | + | </div> | |
− | + | </div> | |
− | <div class=" | + | <div class="p-5 rounded bg-primary"> |
+ | <a href="#abstract" class="tongue tongue-bottom scroll-me"><i class="fas fa-angle-down"></i></a> | ||
+ | </div> | ||
− | + | </div> | |
− | + | </div> | |
− | + | </section> | |
− | + | ||
− | + | ||
− | |||
− | |||
− | </div> | + | <section id="abstract" class="slice"> |
+ | <div class="container"> | ||
+ | <div class="mb-5 text-center"> | ||
+ | <br> | ||
+ | <h3 class="heading h3"><font size="+5">This is CAPOEIRA</font></h2> | ||
+ | </div> | ||
− | |||
+ | <div class="row row-grid align-items-center slice slice-lg"> | ||
+ | <div class="col-lg-5"> | ||
+ | <div class="animate-this"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/0/01/T--EPFL--bioinfo.svg" class="img-center img-fluid" width="300px"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="col-lg-7 ml-lg-auto"> | ||
+ | <div> | ||
+ | <h2 class="text-center"><font size="+2">Bioinformatics</font></h2> | ||
+ | <p class="lead text-gray my-4 text-center"> | ||
+ | <font size="+2">First, a bioinformatic pipeline integrating state-of-the-art tools identifies our target: melonoma neoantigens, the fingerprints of cancer cells</font> | ||
+ | </p> | ||
− | <div class=" | + | </div> |
− | + | </div> | |
− | + | </div> | |
− | + | <br> | |
− | + | <div class="row row-grid align-items-center slice slice-lg"> | |
+ | <div class="col-lg-5 order-lg-2 ml-lg-auto"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/b/b2/T--EPFL--vaccine-logo.svg" class="img-center img-fluid" width="300px"> | ||
+ | </div> | ||
+ | <div class="col-lg-7 order-lg-1"> | ||
+ | <div class="pr-lg-7"> | ||
+ | <h2 class="text-center"><font size="+2">Vaccine</font></h2> | ||
+ | <p class="lead text-gray my-4 text-center"> | ||
+ | <font size="+2">Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes</font> | ||
+ | </p> | ||
− | + | </div> | |
− | + | </div> | |
− | + | </div> | |
− | + | ||
− | </div> | + | <div class="row row-grid align-items-center"> |
+ | <div class="col-lg-5"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/4/4a/T--EPFL--DCentier.svg" class="img-center img-fluid" width="300px"> | ||
+ | </div> | ||
+ | <div class="col-lg-7 ml-lg-auto"> | ||
+ | <div> | ||
+ | <h2 class="text-center"><font size="+2">Dendritic cell Activation</font></h2> | ||
+ | <p class="lead text-gray my-4 text-center"> | ||
+ | <font size="+2">This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen bearing cancer cells</font> | ||
+ | </p> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row row-grid align-items-center"> | ||
+ | <div class="col-lg-5 order-lg-2 ml-lg-auto"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/3/3d/T--EPFL--follow_up_logo.svg" class="img-center img-fluid" width="300px"> | ||
+ | </div> | ||
+ | <div class="col-lg-7 order-lg-1"> | ||
+ | <div class="pr-lg-7"> | ||
+ | <h2 class="text-center"> <font size="+2">Follow-up</font></h2> | ||
+ | <p class="lead text-gray my-4 text-center"> | ||
+ | <font size="+2">Nevertheless, we don't underestimate a defeated villain! To detect potential relapse we use techniques like CRISPR-Cas12a to detect circulationg tumor miRNA and DNA</font> | ||
+ | </p> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
− | < | + | <hr style="height:2px;border:none;color:#333;background-color:#333;" > |
+ | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </div> | + | <section class="slice slice-xl bg-cover bg-size--cover" style="background-image: url('https://static.igem.org/mediawiki/2018/4/4f/T--EPFL--TeamPage.jpeg'); background-position: center top;"> |
+ | <div class="container"> | ||
+ | <div class="row justify-content-center"> | ||
+ | <div class="col-lg-9"> | ||
+ | <div class="text-center"> | ||
+ | <h2 class="heading h1 text-white"> </br> </br> </br> Won: <span>Gold Medal</span></br> Nominated for: <span>Best Therapeutic Project</span> and <span>Best Software</br></ul></ui></h2> | ||
+ | <div class="btn-container mt-5"> | ||
+ | <a href="https://2018.igem.org/Team:EPFL/Awards" class="btn btn-white btn-primary btn-circle px-5">Our Awards!</a> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </section> | ||
+ | <div class="container"> | ||
− | < | + | <hr style="height:2px;border:none;color:#333;background-color:#333;" > |
− | + | <div class="row"> | |
− | + | <video class="responsive-video center-margin" style="width: 100%; padding: 30px" controls> | |
− | + | <source src="https://static.igem.org/mediawiki/2018/7/77/T--EPFL--iGEM_2018_video.mp4" type="video/mp4" > | |
− | + | </video> | |
− | + | </div> | |
− | </div> | + | </div> |
− | |||
− | + | </section> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | </main> | ||
+ | </body> | ||
</html> | </html> | ||
+ | {{EPFL/Footer}} |
Latest revision as of 00:21, 8 December 2018
CAPOEIRA
CAncer PersOnalized Encapsulin Immunotherapy and Relapse Assay
Learn more about our projectWhat is CAPOEIRA ?
While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance. First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to fight back!
This is CAPOEIRA
Bioinformatics
First, a bioinformatic pipeline integrating state-of-the-art tools identifies our target: melonoma neoantigens, the fingerprints of cancer cells
Vaccine
Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes
Dendritic cell Activation
This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen bearing cancer cells
Follow-up
Nevertheless, we don't underestimate a defeated villain! To detect potential relapse we use techniques like CRISPR-Cas12a to detect circulationg tumor miRNA and DNA
Won: Gold Medal Nominated for: Best Therapeutic Project and Best Software