Difference between revisions of "Team:Kyoto/Design"

 
(96 intermediate revisions by 5 users not shown)
Line 19: Line 19:
 
     margin-right:10%;
 
     margin-right:10%;
 
     margin-bottom: 10px;
 
     margin-bottom: 10px;
     color: #f0f8ff;
+
     color: #757575;
 
   }
 
   }
 
   ul.index1 ul{
 
   ul.index1 ul{
 
     list-style:none;
 
     list-style:none;
     color:#fffafa;
+
     color:#757575;
 
+
  }
 +
  .reference{
 +
    list-style:none;
 +
    color:#757575;
 +
    margin-left:10%;
 +
    margin-right:10%;
 
   }
 
   }
 
   li{
 
   li{
 
     list-style:none;
 
     list-style:none;
     color:#fffafa;
+
     color:#757575;
 
   }
 
   }
 +
 +
  ul.reference {
 +
    list-style:none;
 +
    font-family: 'Segoe UI';
 +
    font-size:140%;
 +
    margin-left:10%;
 +
    margin-right:10%;
 +
    color: #757575;
 +
  }
 +
    ul.reference ul{
 +
    list-style:none;
 +
    color:#757575;
 +
 +
  }
 +
 +
 
 
   p.description{
 
   p.description{
 
     font-size:140%;
 
     font-size:140%;
 
     text-align:center;
 
     text-align:center;
 
     margin-left:0 auto;
 
     margin-left:0 auto;
     margin-right:0 auto;}  
+
     margin-right:0 auto;
 +
    font-family: 'Segoe UI';
 +
 
 +
}  
 +
 
 +
  p {
 +
    font-size:140%;
 +
    text-align:left;
 +
    margin-left:0 auto;
 +
    margin-right:0 auto;
 +
    font-family: 'Segoe UI';
 +
}
 +
 
 +
 
  
  
Line 45: Line 79:
 
}
 
}
  
 +
h5 {
 +
background: linear-gradient(transparent 90%, #25B6CA 80%);
 +
margin-left: 10%;
 +
}
  
 
#jump{
 
#jump{
Line 71: Line 109:
  
 
<div style='padding-top: 100px;'><h1 id="wrapper"><img src="https://static.igem.org/mediawiki/2018/2/2b/T--Kyoto--DesignTitle.png" width="30%"></div></h1>
 
<div style='padding-top: 100px;'><h1 id="wrapper"><img src="https://static.igem.org/mediawiki/2018/2/2b/T--Kyoto--DesignTitle.png" width="30%"></div></h1>
 
<p class="description">Introduction<br>
 
私たちは、Na+を効率よくとりこむusefulな酵母を作成し、モデリングによりある量のNa+を回収するのに必要な酵母投入量を割り出すことを目指しました。そのために、たくさんの研究がなされているシロイヌナズナや、塩生植物の遺伝子をもとにして、効率よくNa+を取り込むような系をデザインしました。
 
そしてバイオセーフティーのために酵母を凝集させることを試みました。
 
</p><br>
 
  
 
<div class="box27">
 
<div class="box27">
Line 81: Line 114:
  
 
     <ul class="index1">
 
     <ul class="index1">
             <li><a href="#塩吸収酵母">1)<b> 塩吸収酵母</a></b></li>
+
             <li><a href="#Our Design"> 1) Our Design</a></li>
             <li><a href="#Halotorelance of Yeast"> <b> ・Halotorelance of yeast</a></b></li>
+
             <li><a href="#Preparation of salt resistance enhancing plasmid in budding yeast"> 2) Preparation of salt resistance enhancing plasmid in budding yeast</a></li>
             <li><a href="#Modification of Transporters on Cellular Membrane"> <b> ・Modification of Transporters on Cellular Membrane</a></b></li>
+
             <li><a href="#Preparation of yeast to incorporate Na+"> 3) Preparation of yeast to incorporate Na+</a></li>
             <li><a href="#Modification of Transporters on Vacuolar Membrane"> <b> ・Modification of Transporters on Vacuolar Membrane</a></b></li>
+
             <li><a href="#Reduce the concentration of NaCl in the medium"> 5) Reduce the concentration of NaCl in the medium</a></li>
             <li><a href="#凝集酵母">2)<b> 凝集酵母</a></b></li>          
+
             <li><a href="#Development of aggregation system"> 5) Development of aggregation system</a></li>        
 
</ul>
 
</ul>
 
</div>
 
</div>
 +
<br>
 +
<h5 id="Our Design">1) Our Design</h5>
 +
<p>
 +
&emsp; Our device, Swallowmyces cerevisiae, bravely dives into dangerous saltwater and swallow Na+, reducing salt concentration of the water. In order to achieve this, our device i.e. microorganisms should fulfill the four criteria shown below.
  
  <h5 id="塩吸収酵母"> 塩吸収酵母</h5>
+
<br>
<br><p>私たちは、酵母に以下の3つの点を遺伝子工学的に改変することによりNa+取り込み系の実現を試みました。次のセクションから詳しく記述します。</p>
+
<br>1. Survive in high salt water.
<center><img src="https://static.igem.org/mediawiki/2018/4/4a/T--Kyoto--仮design.png" width="30%"></center>
+
<br>2. Uptake Na+ into their cytoplasm or vacuoles.
 +
<br>3. Reduce salt concentration of the water by absorbing Na+.
 +
<br>4. Change to a form which is easy to be collected quickly and trash easily after use.
 +
<br><br>
 +
&emsp; We'll introduce our project design regarding these criteria.
 +
</p>
 +
<br><br><br>
 +
<h5 id="Preparation of salt resistance enhancing plasmid in budding yeast
 +
">2) Preparation of salt resistance enhancing plasmid in budding yeast
 +
</h5>
  
  
  <h5 id="Halotorelance of Yeast"> Halotorelance of Yeast</h5>
+
<p>&emsp; When Na+ ions are collected in S. cerevisiae cells, a high concentration of Na+ might damage the cells. We have to develop tools which protect S. cerevisiae cells from salt damage. We used two devices here, “compatible solute synthesis” and “chaperon-like protein”.
<p>自分たちの酵母の、高塩濃度下での生存率を高めて応用可能塩濃度範囲を広げるため、耐塩性の付与を試みました。
+
 
塩生植物(halophyte)であるマングローブ由来のシャペロン様タンパク質マングリン、耐塩性を持つ醤油酵母のグリセロール代謝に関わるZrFPS1,ZrGPD1。この2種のどちらが酵母の耐塩性上昇においてよいパフォーマンスをするか、選別します。その導入により酵母の適応塩濃度範囲をexpandします。
+
Did you know that a certain group of yeast is working hard in high salt condition, to provide a great contribution to tables in the world? They are, <i>Zygosaccharomyces rouxii</i>, soy sauce-brewing yeast. They produce glycerol as a compatible solute to counteract osmotic stress. We cloned ZrGPD1 (glycerol-3-phosphate dehydrogenase) and ZrFPS1 (glycerol transporter)from <i>Z. rouxii</i>, both of which are important for the glycerol metabolism in <i>Z. rouxii</i>. We tried to increase salt tolerance of our Swallowmyces cerevisiae by these two genes. Another gene we focused on is mangrin, a small peptide which derived from mangrove. It is a chaperone-like protein and believed to repair salt damaged proteins. We decided to test this gene to increase yeast salt tolerance.
 +
 
 
</p>
 
</p>
<center><img src="https://static.igem.org/mediawiki/2018/7/77/T--Kyoto--Designfig1.png" width="30%"><p>Figure1:酵母の耐塩性に貢献する3つのタンパク質。Mangrin:酵母での発現が確認されたシャペロン様タンパク質。ZrGPD1:グリセロール産生に関わるタンパク質、グリセロールが適合溶質として働くと期待される。ZrFPS1:グリセロールの漏出を防ぐタンパク質(mangrin→續さん、Zr:島添君)</center>
 
  
  <h5 id="Modification of Transporters on Cellular Membrane"> Modification of Transporters on Cellular Membrane</h5>
+
<center><img src="https://static.igem.org/mediawiki/2018/e/e5/T--Kyoto--aratamete1.png" width="40%"></center>
<br><p>細胞膜上のNa+輸送に関わるトランスポーターをノックアウトしたり導入したりすることで、細胞膜のNa+透過性を上げ、速度論的にNa+取り込みをimproveします。
+
<p><center><font face="Segoe UI" font size=2px font color=#000000>Figure1. ZrGPD1/ZrFPS1/mangrin in Yeast</font></center></p>
・Na+を外部に流出するトランスポーターとして、ENA1,NHA1に注目し、以下のノックアウト株作成を試みました。
+
NHA1Δ、ENA1Δ、NHA1ΔENA1Δ、ENA1,2,5Δ、ENA1,2,5ΔNHA1Δ(正しい表記がわかりません)
+
外のトランスポーターを×しているイラスト(Aachenを参考に。マングリンたちは灰色などにして目立たなくする)ENA1: the first member of a tandem array of genes encoding nearly, but not perfectly, identical P-Type ATPases.[1]
+
NHA1:
+
 
<br><br>
 
<br><br>
・Na+を内部に取り込むトランスポーターとして、シロイヌナズナ由来のAtHKT1,アイスプラント由来のMcHKT2に注目しました。どちらのパフォーマンスがいいか選別します。いい方を導入し、Na+の取り込み促進を狙います。
+
  <h5 id="Preparation of yeast to incorporate Na+"> 3) Preparation of yeast to incorporate Na+
外のトランスポーターは灰色とかで目立たなくして、細胞膜上でNa+を取り込むイラスト。AtHKT1:木部に発現するタンパク質で、Na+の輸送に関わるMcHK2:AthKT1のホモログで、塩耐性の強いアイスプラント由来のもの(担当、童と仲里さん)
+
</h5>
(McHKT2はコンストできなかった、と正直にリザルトで書こうと思う)
+
<br><p>&emsp; <i>S. cerevisiae</i> has Na+ transporter to remove Na+ from their cytoplasm. The main transporters include NHA1, ENA1, ENA2, ENA4. When all of these genes were knocked out, the deletion strain shows high sensitivity against NaCl. To produce yeast strain that uptake even more Na+, we knocked out all of the above genes by using a homologous recombination system, Furthermore, we found a protein called AtHKT1 which involves in an influx of Na+ in plants.  By overexpressing AtHKT1, we expected that more Na+ will be collected by the yeast. Another candidate gene we found is McHKT2. McHKT2 is a Na+ transporter of <i>Mesembryanthemum crystallinum</i>in other words, “ice-plant”, a salt tolerance plant. It is reported that McHKT2 is involved the salt compartmentalization in this plant. High concentration Na+ in cytoplasm might damage the cells. To overcome this problem, we will use the salt plants’ salt tolerance system, where Na+ in the cytoplasm is sequestered into vacuole by Na+/H+ exchanger. These factors include Na+/H+ antiporter AtNHXS1 from A. thaliana, SseNHX1, a paralog of AtNHXS1 from the salt plant, and a vacuolar protein AVP1 which increase H+ concentration in a vacuole. By enhancing Na+ influx and preventing Na+ efflux at the same time. Finally, by redirecting cytoplasmic Na+ into vacuoles, we aimed to create yeast strain which accumulates more Na+.
</P>
+
</p>
 +
<center><img src="https://static.igem.org/mediawiki/2018/c/c3/T--Kyoto--aratamete2.png" width="40%"></center>
 +
<p><center><font face="Segoe UI" font size=2px font color=#000000>Figure2.Transporters related to Na+ in Yeast</font></center></p>
  
<h5 id="Modification of Transporters on Vacuolar Membrane"> Modification of Transporters on Vacuolar Membrane</h5>
+
 
<p>Na+は様々な酵素の活性を阻害するので(参考)、液胞に隔離させるために、AntiporterNHX1とH+-PpaseAVP1を導入することでNa+取り込み機構を構築します。
+
 
NHX1として、シロイヌナズナ由来のAtNHX1をDNAシャッフリングにより活性を高めたAtNHXS1と、2種類の塩生植物のNHX1をDNAシャッフリングしたSseNHX1の2つがあり、どちらがよりよいパフォーマンスをするか選別します。
+
<br><br> <h5 id="Reduce the concentration of NaCl in the medium
液胞膜上にトランスポーターがあってNa+を取り込むイラスト AtNHXS1: SseNHX1:(担当田向君だったが)
+
">4) Reduce the concentration of NaCl in the medium
 +
</h5>
 +
<br><p>&emsp; The goal of our Swallowmyces cerevisiae is not the uptake of Na+. We aim to reduce the salt concentration of the water by this device. By combining experimental data and mathematical modeling, we try to optimize our system, to achieve maximum desalination. What will happen when we put our best strain into high salt-containing media? 
 
</p>
 
</p>
  
  <h5 id="凝集酵母"> 凝集酵母</h5>
+
<center><img src="https://static.igem.org/mediawiki/2018/e/e4/T--Kyoto--aratamete3.png" width="40%"></center>
<p>私たちの酵母によって目的の塩濃度まで下げたあと、酵母を回収しやすくするためにそれらを凝集させる系の確立を目指しました。そのためにsurface displayを介してSdrG-FgβF3結合という共有結合に匹敵するほど強力なタンパク質間結合を利用しました。
+
<p><center><font face="Segoe UI" font size=2px font color=#000000>Figure3. transporters and peptide in this project</font></center></p>
surface displayにおいて、パッセンジャーを表層提示するためにsed1 anchoringドメインを用いました。</p>
+
表層提示してくっついてるイラスト
+
  
 +
<br><br>
 +
<h5 id="Development of aggregation system">4) Development of aggregation system
 +
</h5>
 +
<p>&emsp; Even if our device efficiently reduce NaCl concentration in the media, we will never stop our research and development. We try to construct a robust safety system for the biocontainment of our genetically modified yeast cells. For this purpose, we selected two genes, SdrG and FgBeta.
 +
</p>
 +
<br>
 +
<p>
 +
&emsp; SdrG is a surface component of Staphylococcus epidermidis. It is known that SdrG tightly binds to a small N-terminus domain of human fibrinogen beta. Reportedly, the binding between SdrG and fibrinogen beta is as strong as a covalent bond. If we express these proteins on the surface of yeast separately, we might see strong coupling of two yeast cells mediated by this interaction. In such a case, as one cell will display multiple handles, we might see a big ball of conjugated yeast cells, when we mix the two “handle-displaying” strains.</p>
 +
<br>
 +
<p>
 +
&emsp; SdrG is a surface component of Staphylococcus epidermidis. It is indicated that this protein binds extremely strongly to a short sequence of 25 amino acids derived from human fibrinogen beta and this is involved in the sticking of biofilm to the body. If these proteins are expressed by a surface display in separate yeasts, can we realize the strong binding of these cells by the strong binding force? If one of the yeast expresses a plurality of handle, it makes us realize large cell mass one across just by blending the two types of yeast……??
  
+
</p>
 +
<div class="reference">
 
   <h6>Reference</h6>
 
   <h6>Reference</h6>
       <ul class="reference">
+
       <ul class"reference">
        <li>[1] Nihonsankei, “Nihon-sankei 【 official website 】 The three most scenic spots in Japan.” [Online]. Available: http://nihonsankei.jp/eng/. [Accessed: 21-Oct- 2017].</li>
+
<li>[1] R. Haro, B. Garciadeblas, A. Rodriguez-Navarro (1991) A novel P-type ATPase from yeast involved in sodium transport, <i>FEBS Letters</i> Vol.291 Issue2 189-191</li>
<li>[2] Forestry Agency, “Damage of Pine-wood nematodes:Forestry Agency,” 2016. [Online]. Available: http://www.rinya.maff.go.jp/j/hogo/higai/matukui.html. [Accessed: 21-Oct- 2017].</li>
+
        <li>[2] Jos6 A. Miirquez, Ramdn Serrano (1996) Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast, <i>FEBS Letters</i> Vol.382 Issue1-2 89-92</li>
<li>[3] Kuroda Keiko, “Machanism of pine-wilt disease and characteristics of resistant pine trees,” 2007.</li>
+
        <li>[3] A. Yamada, T. Saitoh, T. Mimura et al. (2002) Expression of Mangrove Allene Oxide Cyclase Enhances Salt Tolerance in <i>Escherichia coli</i>, Yeast, and Tobacco Cells, <i>Plant and cell physiology</i> 903-910
<li>[4] A. Y. Ryss, O. A. Kulinich, and J. R. Sutherland, “Pine wilt disease: a short review of worldwide research,” For. Stud. China, vol. 13, no. 2, pp. 132–138, Jun. 2011.</li>
+
</li>
<li>[5] Y. Mamiya, “History of Pine Wilt Disease in Japan 1,” J. Nematol., vol. 20, no. 2, pp. 219–226, 1988.</li>
+
<li>[4] Hou,Lihua Wang,Meng Wang,Cong Wang,Chunling Wang,Haiyong (2013) Analysis of salt-tolerance genes in zygosaccharomyces rouxii, <i>Applied Biochemistry and Biotechnoloogy</i> 1417-1425 </li>
<li>[6] Forestry Agency, “The present state of damage of pine-wood nematodes,” 2016. [Online]. Available: http://www.rinya.maff.go.jp/j/hogo/higai/attach/pdf/matukui-1.pdf. [Accessed: 21-Oct-2017].</li>
+
<li>[5] L. Milles, K. Schulten, H. Gaub et al. (2018) Molecular mechanism of extreme mechanostability in a pathogen adhesin, <i>Science</i> Vol.359 Issue6383 1527-1533 </li>
<li>[7] D. N. Proença, G. Grass, and P. V Morais, “Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode.,” Microbiologyopen, vol. 6, no. 2, Apr. 2017.</li>
+
 
<li>[8] Kyoto Association for the Promotion of Traditional Culture of forest, “Danger of Kyoto's three representative mountains,” 2007. [Online]. Available: http://www.kyoto-dentoubunkanomori.jp/topics/img/brochure.pdf. [Accessed: 21-Oct-2017].</li>
+
 
<li>[9] T. Kiyohara and Y. Tokushige, “Inoculation Experiments of a Nematode, Bursaphelenchus sp., onto Pine Trees,” J. JAPANESE For. Soc., 1971.</li>
+
 
<li>[10]C. Vicente, M. Espada, P. Vieira, and M. Mota, “Pine Wilt Disease: a threat to European forestry,” Eur J Plant Pathol, vol. 133, pp. 89–99, 2012.</li>
+
 
<li>[11]Rejendra Singh and Swastik Phulera, “Plant Parasitic Nematodes: The Hidden Enemies of Farmers,” Reserch gate, 2015.</li>
+
 
<li>[12]K. syou Kuroda Keiko, “Lisk of water outage and withering by trunk injection against pine-wilt disease,” 2016.</li>
+
 
<li>[13]A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, Feb. 1998.</li>
+
 
<br>
+
 
 +
      <br>
 
<br>
 
<br>
 
       </ul>
 
       </ul>
 +
</div>
 
   </div>
 
   </div>
 
   </div>
 
   </div>

Latest revision as of 02:38, 8 December 2018

Team:Kyoto/Design - 2018.igem.org


1) Our Design

  Our device, Swallowmyces cerevisiae, bravely dives into dangerous saltwater and swallow Na+, reducing salt concentration of the water. In order to achieve this, our device i.e. microorganisms should fulfill the four criteria shown below.

1. Survive in high salt water.
2. Uptake Na+ into their cytoplasm or vacuoles.
3. Reduce salt concentration of the water by absorbing Na+.
4. Change to a form which is easy to be collected quickly and trash easily after use.

  We'll introduce our project design regarding these criteria.




2) Preparation of salt resistance enhancing plasmid in budding yeast

  When Na+ ions are collected in S. cerevisiae cells, a high concentration of Na+ might damage the cells. We have to develop tools which protect S. cerevisiae cells from salt damage. We used two devices here, “compatible solute synthesis” and “chaperon-like protein”. Did you know that a certain group of yeast is working hard in high salt condition, to provide a great contribution to tables in the world? They are, Zygosaccharomyces rouxii, soy sauce-brewing yeast. They produce glycerol as a compatible solute to counteract osmotic stress. We cloned ZrGPD1 (glycerol-3-phosphate dehydrogenase) and ZrFPS1 (glycerol transporter)from Z. rouxii, both of which are important for the glycerol metabolism in Z. rouxii. We tried to increase salt tolerance of our Swallowmyces cerevisiae by these two genes. Another gene we focused on is mangrin, a small peptide which derived from mangrove. It is a chaperone-like protein and believed to repair salt damaged proteins. We decided to test this gene to increase yeast salt tolerance.

Figure1. ZrGPD1/ZrFPS1/mangrin in Yeast



3) Preparation of yeast to incorporate Na+

S. cerevisiae has Na+ transporter to remove Na+ from their cytoplasm. The main transporters include NHA1, ENA1, ENA2, ENA4. When all of these genes were knocked out, the deletion strain shows high sensitivity against NaCl. To produce yeast strain that uptake even more Na+, we knocked out all of the above genes by using a homologous recombination system, Furthermore, we found a protein called AtHKT1 which involves in an influx of Na+ in plants. By overexpressing AtHKT1, we expected that more Na+ will be collected by the yeast. Another candidate gene we found is McHKT2. McHKT2 is a Na+ transporter of Mesembryanthemum crystallinumin other words, “ice-plant”, a salt tolerance plant. It is reported that McHKT2 is involved the salt compartmentalization in this plant. High concentration Na+ in cytoplasm might damage the cells. To overcome this problem, we will use the salt plants’ salt tolerance system, where Na+ in the cytoplasm is sequestered into vacuole by Na+/H+ exchanger. These factors include Na+/H+ antiporter AtNHXS1 from A. thaliana, SseNHX1, a paralog of AtNHXS1 from the salt plant, and a vacuolar protein AVP1 which increase H+ concentration in a vacuole. By enhancing Na+ influx and preventing Na+ efflux at the same time. Finally, by redirecting cytoplasmic Na+ into vacuoles, we aimed to create yeast strain which accumulates more Na+.

Figure2.Transporters related to Na+ in Yeast



4) Reduce the concentration of NaCl in the medium

  The goal of our Swallowmyces cerevisiae is not the uptake of Na+. We aim to reduce the salt concentration of the water by this device. By combining experimental data and mathematical modeling, we try to optimize our system, to achieve maximum desalination. What will happen when we put our best strain into high salt-containing media?

Figure3. transporters and peptide in this project



4) Development of aggregation system

  Even if our device efficiently reduce NaCl concentration in the media, we will never stop our research and development. We try to construct a robust safety system for the biocontainment of our genetically modified yeast cells. For this purpose, we selected two genes, SdrG and FgBeta.


  SdrG is a surface component of Staphylococcus epidermidis. It is known that SdrG tightly binds to a small N-terminus domain of human fibrinogen beta. Reportedly, the binding between SdrG and fibrinogen beta is as strong as a covalent bond. If we express these proteins on the surface of yeast separately, we might see strong coupling of two yeast cells mediated by this interaction. In such a case, as one cell will display multiple handles, we might see a big ball of conjugated yeast cells, when we mix the two “handle-displaying” strains.


  SdrG is a surface component of Staphylococcus epidermidis. It is indicated that this protein binds extremely strongly to a short sequence of 25 amino acids derived from human fibrinogen beta and this is involved in the sticking of biofilm to the body. If these proteins are expressed by a surface display in separate yeasts, can we realize the strong binding of these cells by the strong binding force? If one of the yeast expresses a plurality of handle, it makes us realize large cell mass one across just by blending the two types of yeast……??

Reference
  • [1] R. Haro, B. Garciadeblas, A. Rodriguez-Navarro (1991) A novel P-type ATPase from yeast involved in sodium transport, FEBS Letters Vol.291 Issue2 189-191
  • [2] Jos6 A. Miirquez, Ramdn Serrano (1996) Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast, FEBS Letters Vol.382 Issue1-2 89-92
  • [3] A. Yamada, T. Saitoh, T. Mimura et al. (2002) Expression of Mangrove Allene Oxide Cyclase Enhances Salt Tolerance in Escherichia coli, Yeast, and Tobacco Cells, Plant and cell physiology 903-910
  • [4] Hou,Lihua Wang,Meng Wang,Cong Wang,Chunling Wang,Haiyong (2013) Analysis of salt-tolerance genes in zygosaccharomyces rouxii, Applied Biochemistry and Biotechnoloogy 1417-1425
  • [5] L. Milles, K. Schulten, H. Gaub et al. (2018) Molecular mechanism of extreme mechanostability in a pathogen adhesin, Science Vol.359 Issue6383 1527-1533