Difference between revisions of "Team:Kyoto/Design"

 
(51 intermediate revisions by 5 users not shown)
Line 55: Line 55:
 
     text-align:center;
 
     text-align:center;
 
     margin-left:0 auto;
 
     margin-left:0 auto;
     margin-right:0 auto;}
+
     margin-right:0 auto;
 +
    font-family: 'Segoe UI';
  
   p.honbun{
+
}
 +
 
 +
   p {
 
     font-size:140%;
 
     font-size:140%;
 
     text-align:left;
 
     text-align:left;
 
     margin-left:0 auto;
 
     margin-left:0 auto;
     margin-right:0 auto;}  
+
     margin-right:0 auto;
 +
    font-family: 'Segoe UI';
 +
}  
  
  
Line 74: Line 79:
 
}
 
}
  
 +
h5 {
 +
background: linear-gradient(transparent 90%, #25B6CA 80%);
 +
margin-left: 10%;
 +
}
  
 
#jump{
 
#jump{
Line 105: Line 114:
  
 
     <ul class="index1">
 
     <ul class="index1">
             <li><a href="#Overview"> 1)<b> Overview</a></b></li>
+
             <li><a href="#Our Design"> 1) Our Design</a></li>
             <li><a href="#塩吸収酵母"> 2)<b> 塩吸収酵母</a></b></li>
+
             <li><a href="#Preparation of salt resistance enhancing plasmid in budding yeast"> 2) Preparation of salt resistance enhancing plasmid in budding yeast</a></li>
             <li><a href="#Modification of Transporters on Cellular Membrane"> <b>   2-1)Modification of Transporters on Cellular Membrane</a></b></li>
+
             <li><a href="#Preparation of yeast to incorporate Na+"> 3) Preparation of yeast to incorporate Na+</a></li>
             <li><a href="#Modification of Transporters on Vacuolar Membrane"> <b>   2-2)Modification of Transporters on Vacuolar Membrane</a></b></li>
+
             <li><a href="#Reduce the concentration of NaCl in the medium"> 5) Reduce the concentration of NaCl in the medium</a></li>
             <li><a href="#Halotorelance of yeast"> 3)<b>Halotorelance of yeast</a></b></li>
+
             <li><a href="#Development of aggregation system"> 5) Development of aggregation system</a></li>        
            <li><a href="#凝集酵母">3)<b> 凝集酵母</a></b></li>          
+
 
</ul>
 
</ul>
 
</div>
 
</div>
 
  <h5 id="Halotorelance of Yeast"> 1)Overview</h5>
 
<p class="honbun">高い塩濃度を含む液体から塩を除去する酵母を作るために、われわれは3つのfeatureを酵母に付与することにした。まず、塩濃度の高い環境でも酵母が過剰なダメージを受けないために、耐塩性生物の持つシステムをわれわれの酵母に移植すること。次に、酵母が本来もっているNa+排出システムを破壊して、流入したNa+が外液に戻っていかなくすること。さらに、酵母が細胞質の高いNa+濃度によりダメージを受けないように、細胞内のNa+を積極的に液胞内部へ運ぶポンプを発現していること。この3つを用意することで、細胞内により多くのNa+を蓄積する酵母を作成することを目指した。
 
 
さらにわれわれのデバイスの使用用途を拡張するために、biocontainmentのためのハンドルを酵母表面に提示させ、酵母をアグリゲーションさせて回収するシステムを用意した。これら2つを組み合わせることで、より広い環境で脱塩システムを稼働させることができるようになる。</p>
 
 
 
  <h5 id="塩吸収酵母"> 2)塩吸収酵母</h5>
 
<br><p>私たちは、酵母の細胞膜上、そして液胞膜上のを遺伝子工学的に改変することによりNa+取り込み系の実現を試みました。次のセクションから詳しく記述します。</p>
 
 
<h5 id="Modification of Transporters on Cellular Membrane"> 2-1)Modification of Transporters on Cellular Membrane</h5>
 
<br><p>細胞膜上のNa+輸送に関わるトランスポーターをノックアウトしたり導入したりすることで、細胞膜のNa+透過性を上げ、速度論的にNa+取り込みをimproveします。
 
 
 
<br>
 
<br>
・At first, 酵母のネイティブのNa+排出トランスポーターをノックアウトしてNa+の漏出を阻害します。Na+を外部に流出するトランスポーターとして、ENA1,ENA2, ENA5および,NHA1に注目し、以下のノックアウト株の作成をデザインしました。 NHA1Δ、ENA1Δ、NHA1ΔENA1Δ、ENA1,2,5ΔNHA1Δ
+
<h5 id="Our Design">1) Our Design</h5>
 
+
<p>
ENA1, ENA2, and ENA5 array in tandem are nearly identical P-Type ATPases localized on cellular membrane. ENA1 is most characterized and is thought to code a primary membrane Na+-ATPase exporter in S. cerevisiae and contribute to the detoxification of Na+ ion remarkably, so ENA1欠損株は塩感受性を示す事がわかっている。 ゲノムデータベースによると私たちが用いるBY4741、YKO親株がコードするENA1,2,5の遺伝子座は、DBY746/747 and W303.1A/BのENA1-4にあたり、 it is reported that disruption of ENA1-4 genes of S. cerevisiae does not completely eliminate Na+ efflux. [1][2]
+
&emsp; Our device, Swallowmyces cerevisiae, bravely dives into dangerous saltwater and swallow Na+, reducing salt concentration of the water. In order to achieve this, our device i.e. microorganisms should fulfill the four criteria shown below.  
NHA1 is Na+/H+ antiporter and mediates Na+ efflux through plasma membrane. Its deletion is reported to show salt sensitivity. [3]</p>
+
 
+
<center><img src="https://static.igem.org/mediawiki/2018/0/08/T--Kyoto--aha5.png" width="40%"></center>
+
  
 
<br>
 
<br>
<p>
+
<br>1. Survive in high salt water.
 +
<br>2. Uptake Na+ into their cytoplasm or vacuoles.
 +
<br>3. Reduce salt concentration of the water by absorbing Na+.
 +
<br>4. Change to a form which is easy to be collected quickly and trash easily after use.
 +
<br><br>
 +
&emsp; We'll introduce our project design regarding these criteria.
 +
</p>
 +
<br><br><br>
 +
<h5 id="Preparation of salt resistance enhancing plasmid in budding yeast
 +
">2) Preparation of salt resistance enhancing plasmid in budding yeast
 +
</h5>
  
・次に、Na+を効率よく内部に取り込むトランスポーターを取り入れることで、Na+をためこませます。そういったトランスポーターとして、シロイヌナズナ由来のAtHKT1,アイスプラント由来のMcHKT2に注目しました。どちらがよりNa+取り込みにおいてパフォーマンスがいいか比較します。
 
  
HKT family proteins are high K+ affinity transporters, and AtHKT1 is expressed in xylem of Arabidopsis thaliana. HKT1 from wheatはK+を輸送するが、AtHKT1はそれとは違ってK+の輸送活性はなく、それよりも高いNa+輸送活性を示すことが分かっている。S. cerevisiaeで発現させたとき塩濃度下で生育が阻害されることが確認されており、Na+のため込みに貢献すると考えられる。[4][5]
+
<p>&emsp; When Na+ ions are collected in S. cerevisiae cells, a high concentration of Na+ might damage the cells. We have to develop tools which protect S. cerevisiae cells from salt damage. We used two devices here, “compatible solute synthesis” and “chaperon-like protein”.
McHK2 is orthologs of AtHKT1 and from Mesembryanthemum crystallinum (ice plant) and thought to be related to cellular Na+ uptake. M.crystallinumはとても強い耐塩性をもっており、McHKT2 has several unique sequence compared to HKT1 ,so it may work better than AtHKT1.[6] (担当、童と仲里さん) (McHKT2はコンストできなかった、と正直にリザルトで書こうと思う)
+
<center><img src="https://static.igem.org/mediawiki/2018/e/e7/T--Kyoto--aha6.png" width="40%"></center>
+
  
</P>
+
Did you know that a certain group of yeast is working hard in high salt condition, to provide a great contribution to tables in the world? They are, <i>Zygosaccharomyces rouxii</i>, soy sauce-brewing yeast. They produce glycerol as a compatible solute to counteract osmotic stress. We cloned ZrGPD1 (glycerol-3-phosphate dehydrogenase) and ZrFPS1 (glycerol transporter)from <i>Z. rouxii</i>, both of which are important for the glycerol metabolism in <i>Z. rouxii</i>. We tried to increase salt tolerance of our Swallowmyces cerevisiae by these two genes. Another gene we focused on is mangrin, a small peptide which derived from mangrove. It is a chaperone-like protein and believed to repair salt damaged proteins. We decided to test this gene to increase yeast salt tolerance.
 
+
 
+
<h5 id="Modification of Transporters on Vacuolar Membrane"> 2-2)Modification of Transporters on Vacuolar Membrane</h5>
+
<p>Na+は様々な酵素の活性を阻害するので(参考)、液胞に隔離させるために、AntiporterNHX1とH+-PpaseAVP1を導入することでNa+取り込み機構を構築します。
+
NHX1として、シロイヌナズナ由来のAtNHX1をDNAシャッフリングにより活性を高めたAtNHXS1と、2種類の塩生植物のNHX1をDNAシャッフリングしたSseNHX1の2つがあり、どちらがよりよいパフォーマンスをするか選別します。
+
AtNHXS1
+
<center><img src="https://static.igem.org/mediawiki/2018/5/51/T--Kyoto--aha7.png" width="40%"></center>
+
  
 
</p>
 
</p>
  
+
<center><img src="https://static.igem.org/mediawiki/2018/e/e5/T--Kyoto--aratamete1.png" width="40%"></center>
    <h5 id="Halotorelance of Yeast"> 3)Halotorelance of Yeast</h5>
+
<p><center><font face="Segoe UI" font size=2px font color=#000000>Figure1. ZrGPD1/ZrFPS1/mangrin in Yeast</font></center></p>
<p class="honbun">We tried to enhance halotolerance of yeast in order to make biological devices work even under high salt concentration. For this, we focused on 3 genes, Mangrin, ZrGPD1 and ZrFPS1. Mangrin is derived from a halophyte plant, Mangrove(<i>Bruguiera sexangula</i>), and encodes a shaperon like protein which is already confirmed to express in yeast. It helps proteins exist stably under high salt concentration. A paper has showed that only 71 amino acids of all the sequence is requied for the function, so we used the functional domain.[1]<br>ZrGPD1 and ZrFPS1 is derived from <i>Zygosaccharomyces rouxii</i>. In Japan, it's very popular because used for create soy source. ZrGPD1 encodes the glycerol-3-phosphate dehydrogenase(参考) and related to glycerol synthesis. ZrFPS1 encodes a putative glycerol transporter and inhibit its efflux. Glycerol works as a conpatible solute, so they are expected to work for increase the osmotic torelance and salt one.[2] By introducing these proteins, We tried to expand the range yeast can be addapted. その導入により酵母の適応塩濃度範囲をexpandします。
+
<br><br>
 +
  <h5 id="Preparation of yeast to incorporate Na+"> 3) Preparation of yeast to incorporate Na+
 +
</h5>
 +
<br><p>&emsp; <i>S. cerevisiae</i> has Na+ transporter to remove Na+ from their cytoplasm. The main transporters include NHA1, ENA1, ENA2, ENA4. When all of these genes were knocked out, the deletion strain shows high sensitivity against NaCl. To produce yeast strain that uptake even more Na+, we knocked out all of the above genes by using a homologous recombination system, Furthermore, we found a protein called AtHKT1 which involves in an influx of Na+ in plants. By overexpressing AtHKT1, we expected that more Na+ will be collected by the yeast. Another candidate gene we found is McHKT2. McHKT2 is a Na+ transporter of <i>Mesembryanthemum crystallinum</i>in other words, “ice-plant”, a salt tolerance plant. It is reported that McHKT2 is involved the salt compartmentalization in this plant. High concentration Na+ in cytoplasm might damage the cells. To overcome this problem, we will use the salt plants’ salt tolerance system, where Na+ in the cytoplasm is sequestered into vacuole by Na+/H+ exchanger. These factors include Na+/H+ antiporter AtNHXS1 from A. thaliana, SseNHX1, a paralog of AtNHXS1 from the salt plant, and a vacuolar protein AVP1 which increase H+ concentration in a vacuole. By enhancing Na+ influx and preventing Na+ efflux at the same time. Finally, by redirecting cytoplasmic Na+ into vacuoles, we aimed to create yeast strain which accumulates more Na+.  
 
</p>
 
</p>
<center><img src="https://static.igem.org/mediawiki/2018/1/1d/T--Kyoto--aha4.png" width="50%"></center>
+
<center><img src="https://static.igem.org/mediawiki/2018/c/c3/T--Kyoto--aratamete2.png" width="40%"></center>
<center><img src="https://static.igem.org/mediawiki/2018/e/e0/T--Kyoto--aha8.png" width="50%"></center>
+
<p><center><font face="Segoe UI" font size=2px font color=#000000>Figure2.Transporters related to Na+ in Yeast</font></center></p>
  
  
<center><p>Figure1:酵母の耐塩性に貢献する3つのタンパク質を表した図。(聞くならmangrin→續さん、Zr:島添君)</center>
 
  
  <h5 id="凝集酵母"> 4)凝集酵母</h5>
+
<br><br> <h5 id="Reduce the concentration of NaCl in the medium
<p>私たちの酵母によって目的の塩濃度まで下げたあと、酵母を回収しやすくするためにそれらを凝集させる系の確立を目指しました。そのためにsurface displayを介してSdrG-FgβF3結合という共有結合に匹敵するほど強力なタンパク質間結合を利用しました。
+
">4) Reduce the concentration of NaCl in the medium
surface displayにおいて、パッセンジャーを表層提示するためにsed1 anchoringドメインを用いました。</p>
+
</h5>
表層提示してくっついてるイラスト
+
<br><p>&emsp; The goal of our Swallowmyces cerevisiae is not the uptake of Na+. We aim to reduce the salt concentration of the water by this device. By combining experimental data and mathematical modeling, we try to optimize our system, to achieve maximum desalination. What will happen when we put our best strain into high salt-containing media? 
 +
</p>
  
 +
<center><img src="https://static.igem.org/mediawiki/2018/e/e4/T--Kyoto--aratamete3.png" width="40%"></center>
 +
<p><center><font face="Segoe UI" font size=2px font color=#000000>Figure3. transporters and peptide in this project</font></center></p>
  
 +
<br><br>
 +
<h5 id="Development of aggregation system">4) Development of aggregation system
 +
</h5>
 +
<p>&emsp; Even if our device efficiently reduce NaCl concentration in the media, we will never stop our research and development. We try to construct a robust safety system for the biocontainment of our genetically modified yeast cells. For this purpose, we selected two genes, SdrG and FgBeta.
 +
</p>
 +
<br>
 +
<p>
 +
&emsp; SdrG is a surface component of Staphylococcus epidermidis. It is known that SdrG tightly binds to a small N-terminus domain of human fibrinogen beta. Reportedly, the binding between SdrG and fibrinogen beta is as strong as a covalent bond. If we express these proteins on the surface of yeast separately, we might see strong coupling of two yeast cells mediated by this interaction. In such a case, as one cell will display multiple handles, we might see a big ball of conjugated yeast cells, when we mix the two “handle-displaying” strains.</p>
 +
<br>
 +
<p>
 +
&emsp; SdrG is a surface component of Staphylococcus epidermidis. It is indicated that this protein binds extremely strongly to a short sequence of 25 amino acids derived from human fibrinogen beta and this is involved in the sticking of biofilm to the body. If these proteins are expressed by a surface display in separate yeasts, can we realize the strong binding of these cells by the strong binding force? If one of the yeast expresses a plurality of handle, it makes us realize large cell mass one across just by blending the two types of yeast……??
 +
 +
</p>
 
<div class="reference">  
 
<div class="reference">  
 
   <h6>Reference</h6>
 
   <h6>Reference</h6>
Line 175: Line 185:
 
<li>[1] R. Haro, B. Garciadeblas, A. Rodriguez-Navarro (1991) A novel P-type ATPase from yeast involved in sodium transport, <i>FEBS Letters</i> Vol.291 Issue2 189-191</li>
 
<li>[1] R. Haro, B. Garciadeblas, A. Rodriguez-Navarro (1991) A novel P-type ATPase from yeast involved in sodium transport, <i>FEBS Letters</i> Vol.291 Issue2 189-191</li>
 
         <li>[2] Jos6 A. Miirquez, Ramdn Serrano (1996) Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast, <i>FEBS Letters</i> Vol.382 Issue1-2 89-92</li>
 
         <li>[2] Jos6 A. Miirquez, Ramdn Serrano (1996) Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast, <i>FEBS Letters</i> Vol.382 Issue1-2 89-92</li>
         <li>[1] A. Yamada, T. Saitoh, T. Mimura et al. (2002) Expression of Mangrove Allene Oxide Cyclase Enhances Salt Tolerance in <i>Escherichia coli</i>, Yeast, and Tobacco Cells, <i>Plant and cell physiology</i> 903-910
+
         <li>[3] A. Yamada, T. Saitoh, T. Mimura et al. (2002) Expression of Mangrove Allene Oxide Cyclase Enhances Salt Tolerance in <i>Escherichia coli</i>, Yeast, and Tobacco Cells, <i>Plant and cell physiology</i> 903-910
 
</li>
 
</li>
<li>[2] Hou,Lihua Wang,Meng Wang,Cong Wang,Chunling Wang,Haiyong (2013) Analysis of salt-tolerance genes in zygosaccharomyces rouxii, <i>Applied Biochemistry and Biotechnoloogy</i> 1417-1425 </li>
+
<li>[4] Hou,Lihua Wang,Meng Wang,Cong Wang,Chunling Wang,Haiyong (2013) Analysis of salt-tolerance genes in zygosaccharomyces rouxii, <i>Applied Biochemistry and Biotechnoloogy</i> 1417-1425 </li>
 +
<li>[5] L. Milles, K. Schulten, H. Gaub et al. (2018) Molecular mechanism of extreme mechanostability in a pathogen adhesin, <i>Science</i> Vol.359 Issue6383 1527-1533 </li>
  
  
  
  
        <li>[4] A. Y. Ryss, O. A. Kulinich, and J. R. Sutherland, “Pine wilt disease: a short review of worldwide research,” For. Stud. China, vol. 13, no. 2, pp. 132–138, Jun. 2011.</li>
+
 
<li>[5] Y. Mamiya, “History of Pine Wilt Disease in Japan 1,” J. Nematol., vol. 20, no. 2, pp. 219–226, 1988.</li>
+
 
<li>[6] Forestry Agency, “The present state of damage of pine-wood nematodes,” 2016. [Online]. Available: http://www.rinya.maff.go.jp/j/hogo/higai/attach/pdf/matukui-1.pdf. [Accessed: 21-Oct-2017].</li>
+
 
<li>[7] D. N. Proença, G. Grass, and P. V Morais, “Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode.,” Microbiologyopen, vol. 6, no. 2, Apr. 2017.</li>
+
 
<li>[8] Kyoto Association for the Promotion of Traditional Culture of forest, “Danger of Kyoto's three representative mountains,” 2007. [Online]. Available: http://www.kyoto-dentoubunkanomori.jp/topics/img/brochure.pdf. [Accessed: 21-Oct-2017].</li>
+
      <br>
<li>[9] T. Kiyohara and Y. Tokushige, “Inoculation Experiments of a Nematode, Bursaphelenchus sp., onto Pine Trees,” J. JAPANESE For. Soc., 1971.</li>
+
<li>[10]C. Vicente, M. Espada, P. Vieira, and M. Mota, “Pine Wilt Disease: a threat to European forestry,” Eur J Plant Pathol, vol. 133, pp. 89–99, 2012.</li>
+
<li>[11]Rejendra Singh and Swastik Phulera, “Plant Parasitic Nematodes: The Hidden Enemies of Farmers,” Reserch gate, 2015.</li>
+
<li>[12]K. syou Kuroda Keiko, “Lisk of water outage and withering by trunk injection against pine-wilt disease,” 2016.</li>
+
<li>[13]A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, Feb. 1998.</li>
+
<br>
+
 
<br>
 
<br>
 
       </ul>
 
       </ul>

Latest revision as of 02:38, 8 December 2018

Team:Kyoto/Design - 2018.igem.org


1) Our Design

  Our device, Swallowmyces cerevisiae, bravely dives into dangerous saltwater and swallow Na+, reducing salt concentration of the water. In order to achieve this, our device i.e. microorganisms should fulfill the four criteria shown below.

1. Survive in high salt water.
2. Uptake Na+ into their cytoplasm or vacuoles.
3. Reduce salt concentration of the water by absorbing Na+.
4. Change to a form which is easy to be collected quickly and trash easily after use.

  We'll introduce our project design regarding these criteria.




2) Preparation of salt resistance enhancing plasmid in budding yeast

  When Na+ ions are collected in S. cerevisiae cells, a high concentration of Na+ might damage the cells. We have to develop tools which protect S. cerevisiae cells from salt damage. We used two devices here, “compatible solute synthesis” and “chaperon-like protein”. Did you know that a certain group of yeast is working hard in high salt condition, to provide a great contribution to tables in the world? They are, Zygosaccharomyces rouxii, soy sauce-brewing yeast. They produce glycerol as a compatible solute to counteract osmotic stress. We cloned ZrGPD1 (glycerol-3-phosphate dehydrogenase) and ZrFPS1 (glycerol transporter)from Z. rouxii, both of which are important for the glycerol metabolism in Z. rouxii. We tried to increase salt tolerance of our Swallowmyces cerevisiae by these two genes. Another gene we focused on is mangrin, a small peptide which derived from mangrove. It is a chaperone-like protein and believed to repair salt damaged proteins. We decided to test this gene to increase yeast salt tolerance.

Figure1. ZrGPD1/ZrFPS1/mangrin in Yeast



3) Preparation of yeast to incorporate Na+

S. cerevisiae has Na+ transporter to remove Na+ from their cytoplasm. The main transporters include NHA1, ENA1, ENA2, ENA4. When all of these genes were knocked out, the deletion strain shows high sensitivity against NaCl. To produce yeast strain that uptake even more Na+, we knocked out all of the above genes by using a homologous recombination system, Furthermore, we found a protein called AtHKT1 which involves in an influx of Na+ in plants. By overexpressing AtHKT1, we expected that more Na+ will be collected by the yeast. Another candidate gene we found is McHKT2. McHKT2 is a Na+ transporter of Mesembryanthemum crystallinumin other words, “ice-plant”, a salt tolerance plant. It is reported that McHKT2 is involved the salt compartmentalization in this plant. High concentration Na+ in cytoplasm might damage the cells. To overcome this problem, we will use the salt plants’ salt tolerance system, where Na+ in the cytoplasm is sequestered into vacuole by Na+/H+ exchanger. These factors include Na+/H+ antiporter AtNHXS1 from A. thaliana, SseNHX1, a paralog of AtNHXS1 from the salt plant, and a vacuolar protein AVP1 which increase H+ concentration in a vacuole. By enhancing Na+ influx and preventing Na+ efflux at the same time. Finally, by redirecting cytoplasmic Na+ into vacuoles, we aimed to create yeast strain which accumulates more Na+.

Figure2.Transporters related to Na+ in Yeast



4) Reduce the concentration of NaCl in the medium

  The goal of our Swallowmyces cerevisiae is not the uptake of Na+. We aim to reduce the salt concentration of the water by this device. By combining experimental data and mathematical modeling, we try to optimize our system, to achieve maximum desalination. What will happen when we put our best strain into high salt-containing media?

Figure3. transporters and peptide in this project



4) Development of aggregation system

  Even if our device efficiently reduce NaCl concentration in the media, we will never stop our research and development. We try to construct a robust safety system for the biocontainment of our genetically modified yeast cells. For this purpose, we selected two genes, SdrG and FgBeta.


  SdrG is a surface component of Staphylococcus epidermidis. It is known that SdrG tightly binds to a small N-terminus domain of human fibrinogen beta. Reportedly, the binding between SdrG and fibrinogen beta is as strong as a covalent bond. If we express these proteins on the surface of yeast separately, we might see strong coupling of two yeast cells mediated by this interaction. In such a case, as one cell will display multiple handles, we might see a big ball of conjugated yeast cells, when we mix the two “handle-displaying” strains.


  SdrG is a surface component of Staphylococcus epidermidis. It is indicated that this protein binds extremely strongly to a short sequence of 25 amino acids derived from human fibrinogen beta and this is involved in the sticking of biofilm to the body. If these proteins are expressed by a surface display in separate yeasts, can we realize the strong binding of these cells by the strong binding force? If one of the yeast expresses a plurality of handle, it makes us realize large cell mass one across just by blending the two types of yeast……??

Reference
  • [1] R. Haro, B. Garciadeblas, A. Rodriguez-Navarro (1991) A novel P-type ATPase from yeast involved in sodium transport, FEBS Letters Vol.291 Issue2 189-191
  • [2] Jos6 A. Miirquez, Ramdn Serrano (1996) Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast, FEBS Letters Vol.382 Issue1-2 89-92
  • [3] A. Yamada, T. Saitoh, T. Mimura et al. (2002) Expression of Mangrove Allene Oxide Cyclase Enhances Salt Tolerance in Escherichia coli, Yeast, and Tobacco Cells, Plant and cell physiology 903-910
  • [4] Hou,Lihua Wang,Meng Wang,Cong Wang,Chunling Wang,Haiyong (2013) Analysis of salt-tolerance genes in zygosaccharomyces rouxii, Applied Biochemistry and Biotechnoloogy 1417-1425
  • [5] L. Milles, K. Schulten, H. Gaub et al. (2018) Molecular mechanism of extreme mechanostability in a pathogen adhesin, Science Vol.359 Issue6383 1527-1533