(Replaced content with "{{Template:IIT_Kanpur}} {{Template:IIT_Kanpur/Footer}}") |
|||
(28 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Template:IIT_Kanpur}} | {{Template:IIT_Kanpur}} | ||
+ | <html> | ||
+ | <div id="whiteBox" style="width: auto; padding: 10px; height: auto; margin-left: 0px; | ||
+ | margin-right: 0px; position: absolute; top: 0px; left: 8%; right: 8%; z-index:-1;"> | ||
+ | <head> | ||
+ | <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> | ||
+ | <meta name=Generator content="Microsoft Word 15 (filtered)"> | ||
+ | <style> | ||
+ | <!-- | ||
+ | /* Font Definitions */ | ||
+ | @font-face | ||
+ | {font-family:"Cambria Math"; | ||
+ | panose-1:2 4 5 3 5 4 6 3 2 4;} | ||
+ | @font-face | ||
+ | {font-family:Calibri; | ||
+ | panose-1:2 15 5 2 2 2 4 3 2 4;} | ||
+ | /* Style Definitions */ | ||
+ | p.MsoNormal, li.MsoNormal, div.MsoNormal | ||
+ | {margin-top:0cm; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:8.0pt; | ||
+ | margin-left:0cm; | ||
+ | line-height:107%; | ||
+ | font-size:11.0pt; | ||
+ | font-family:"Calibri",sans-serif;} | ||
+ | h1 | ||
+ | {mso-style-link:"Heading 1 Char"; | ||
+ | margin-top:12.0pt; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:0cm; | ||
+ | margin-left:0cm; | ||
+ | margin-bottom:.0001pt; | ||
+ | line-height:107%; | ||
+ | page-break-after:avoid; | ||
+ | font-size:16.0pt; | ||
+ | font-family:"Calibri Light",sans-serif; | ||
+ | color:#2E74B5; | ||
+ | font-weight:normal;} | ||
+ | h4 | ||
+ | {mso-style-link:"Heading 4 Char"; | ||
+ | margin-right:0cm; | ||
+ | margin-left:0cm; | ||
+ | font-size:12.0pt; | ||
+ | font-family:"Times New Roman",serif; | ||
+ | font-weight:bold;} | ||
+ | h5 | ||
+ | {mso-style-link:"Heading 5 Char"; | ||
+ | margin-top:2.0pt; | ||
+ | margin-right:0cm; | ||
+ | margin-bottom:0cm; | ||
+ | margin-left:0cm; | ||
+ | margin-bottom:.0001pt; | ||
+ | line-height:107%; | ||
+ | page-break-after:avoid; | ||
+ | font-size:11.0pt; | ||
+ | font-family:"Calibri Light",sans-serif; | ||
+ | color:#2E74B5; | ||
+ | font-weight:normal;} | ||
+ | p | ||
+ | {margin-right:0cm; | ||
+ | margin-left:0cm; | ||
+ | font-size:12.0pt; | ||
+ | font-family:"Times New Roman",serif;} | ||
+ | span.MsoPlaceholderText | ||
+ | {color:gray;} | ||
+ | p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing | ||
+ | {margin:0cm; | ||
+ | margin-bottom:.0001pt; | ||
+ | font-size:11.0pt; | ||
+ | font-family:"Calibri",sans-serif;} | ||
+ | span.MsoSubtleEmphasis | ||
+ | {color:#404040; | ||
+ | font-style:italic;} | ||
+ | span.MsoSubtleReference | ||
+ | {font-variant:small-caps; | ||
+ | color:#5A5A5A;} | ||
+ | span.mi | ||
+ | {mso-style-name:mi;} | ||
+ | span.mo | ||
+ | {mso-style-name:mo;} | ||
+ | span.Heading4Char | ||
+ | {mso-style-name:"Heading 4 Char"; | ||
+ | mso-style-link:"Heading 4"; | ||
+ | font-family:"Times New Roman",serif; | ||
+ | font-weight:bold;} | ||
+ | span.Heading5Char | ||
+ | {mso-style-name:"Heading 5 Char"; | ||
+ | mso-style-link:"Heading 5"; | ||
+ | font-family:"Calibri Light",sans-serif; | ||
+ | color:#2E74B5;} | ||
+ | span.Heading1Char | ||
+ | {mso-style-name:"Heading 1 Char"; | ||
+ | mso-style-link:"Heading 1"; | ||
+ | font-family:"Calibri Light",sans-serif; | ||
+ | color:#2E74B5;} | ||
+ | .MsoPapDefault | ||
+ | {margin-bottom:8.0pt; | ||
+ | line-height:107%;} | ||
+ | @page WordSection1 | ||
+ | {size:595.3pt 841.9pt; | ||
+ | margin:72.0pt 72.0pt 72.0pt 72.0pt;} | ||
+ | div.WordSection1 | ||
+ | {page:WordSection1;} | ||
+ | /* List Definitions */ | ||
+ | ol | ||
+ | {margin-bottom:0cm;} | ||
+ | ul | ||
+ | {margin-bottom:0cm;} | ||
+ | --> | ||
+ | </style> | ||
+ | |||
+ | </head> | ||
+ | |||
+ | <body lang=EN-IN> | ||
+ | |||
+ | <div class=WordSection1> | ||
+ | |||
+ | <p class=MsoNormal><span style='font-size:72.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | <p class=MsoNormal align=center style='text-align:center'><span | ||
+ | style='font-size:72.0pt;line-height:107%'>Modelling</span></p> | ||
+ | |||
+ | <p class=MsoNormal align=center style='text-align:center'><span | ||
+ | style='font-size:18.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><b><span style='font-size:20.0pt'>Overview </span></b></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Mathematical modelling is | ||
+ | fundamental to synthetic biology, a tool that allows for deeper understanding | ||
+ | of biological systems, acting as a link between the conception and the physical | ||
+ | realisation of a biological circuit. Being able stimulate and understand our | ||
+ | system behaviour before actual implementation saves both time and resources.<br> | ||
+ | <br> | ||
+ | </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Through our modelling we | ||
+ | tried to gain insight into our system so that we could improve it and make it | ||
+ | realistically achievable.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>We tried to describe the | ||
+ | whole system with a mathematical system of linear ODEs which could | ||
+ | characterizes the expression and secretion of all enzymes, the associated | ||
+ | substrate – enzyme kinetics.<br> | ||
+ | <br> | ||
+ | </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>In order to realize the | ||
+ | long term goal of developing a detergent biodegradation device for household | ||
+ | and commercial use we tried to implement continuous culture modelling on our | ||
+ | bioreactor design in order to estimate yearly cost of detergent biodegradation.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>_________________________________________________________________________________________________________________________</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><b><span style='font-size:18.0pt'>Single Cell Modelling</span></b></p> | ||
+ | |||
+ | <p class=MsoNoSpacing align=center style='text-align:center'><span | ||
+ | style='font-size:16.0pt'><img width=580 height=373 id="Picture 9" | ||
+ | src="https://static.igem.org/mediawiki/2018/2/25/T--IIT_Kanpur--af1.png" | ||
+ | alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44177337_161118344832834_5155785162818060288_n.png?_nc_cat=110&oh=9e7779a555a3f3b881a5adfaa566230f&oe=5C581588"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Single Cell Modelling allows | ||
+ | to model our gene regulatory network (GRN) and the extracellular secretion of | ||
+ | our enzyme alkyl sulfatase (SdsA1).</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>This model helped us gain | ||
+ | insight into our system in order to understand dependence of rate of secretion | ||
+ | of alkyl sulfatase in media under varying promoter strengths and secretion | ||
+ | efficiencies due to the different secretion extracellular secretion tags PelB | ||
+ | and OmpT.<br> | ||
+ | <br> | ||
+ | </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Our model is based on | ||
+ | overexpression of alkyl sulfatase under constitutive promoters from Anderson | ||
+ | promoter collection in iGEM registry. The concentration of our enzyme SdsA1 is | ||
+ | then predicted using the rates of transcription, translation and degradation | ||
+ | (of both mRNA and protein) that are known in literature.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Since under a constitutive | ||
+ | gene expression is unregulated, it is always on and its strength could be | ||
+ | modelled through the transcription rate constant k1.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img width=372 height=141 | ||
+ | id="Picture 5" src="https://static.igem.org/mediawiki/2018/4/4e/T--IIT_Kanpur--Model_2.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Using the law of mass | ||
+ | action</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img width=387 height=108 | ||
+ | id="Picture 6" src="https://static.igem.org/mediawiki/2018/f/f6/T--IIT_Kanpur--Model_3.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing style='margin-left:36.0pt;text-indent:-18.0pt'><span | ||
+ | style='font-size:16.0pt'>1.<span style='font:7.0pt "Times New Roman"'> | ||
+ | </span></span><span style='font-size:16.0pt'>Transcription rate k1 is estimated | ||
+ | from literature.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing style='text-indent:3.75pt'><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing style='margin-left:36.0pt;text-indent:-18.0pt'><span | ||
+ | style='font-size:16.0pt'>2.<span style='font:7.0pt "Times New Roman"'> | ||
+ | </span></span><span style='font-size:16.0pt'>Translation rate k2 is estimated from | ||
+ | the literature</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing style='margin-left:36.0pt;text-indent:-18.0pt'><span | ||
+ | style='font-size:16.0pt'>3.<span style='font:7.0pt "Times New Roman"'> | ||
+ | </span></span><span style='font-size:16.0pt'>mRNA degradation (d1) and Protein | ||
+ | degradation rate (d2) are known for Ecoli through literature.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Since SdsA1 (alkyl | ||
+ | sulfatase) a extracellular enzyme, it was essential to understand effect of | ||
+ | secretion efficiencies of our enzyme from Ecoli cells, in order to determine | ||
+ | concentration of SdsA1 in the media, which would be needed to model our enzyme | ||
+ | substrate kinetics in order to understand SDS(Sodium Dodecyl Sulfate ) | ||
+ | degradation.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>We tried to model our | ||
+ | protein secretion using a empirical secretion law used by iGEM Stuttgart 2017 | ||
+ | team.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><a | ||
+ | href="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"><span | ||
+ | style='font-size:16.0pt;color:windowtext;text-decoration:none'><img border=0 | ||
+ | width=322 height=47 id="Picture 4" src="https://static.igem.org/mediawiki/2018/0/06/T--IIT_Kanpur--Model_4.jpg" | ||
+ | alt="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"></span></a></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>r<sub>secretion</sub> : | ||
+ | secretion rate </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>[enzyme] : enzyme | ||
+ | concentration </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>s : secretion efficiency </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>t : time </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Here the secretion | ||
+ | efficiency is a value between zero and one.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Since reliable data on | ||
+ | expression of SdsA1 and its extracellular expression in Ecoli was not available | ||
+ | we concluded that our model could only provide a qualitative understanding | ||
+ | various factors on these.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing align=center style='text-align:center'><span | ||
+ | style='font-size:16.0pt'><img border=0 width=602 height=317 id="Picture 8" | ||
+ | src="https://static.igem.org/mediawiki/2018/a/a3/T--IIT_Kanpur--Model_5.jpg" | ||
+ | alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44185937_2064200740556003_6694159164534423552_n.png?_nc_cat=105&oh=040a1b04709ea79fa27d8959210921b6&oe=5C482425"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing align=center style='text-align:center'><span | ||
+ | style='font-size:16.0pt'>Fig 1.Simbiology implementation of our Model<br><br></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing align=center style='text-align:center'><span | ||
+ | style='font-size:16.0pt'><img border=0 width=480 height=auto margin-right=5px | ||
+ | src="https://static.igem.org/mediawiki/2018/d/de/T--IIT_Kanpur--Model_6.jpg" | ||
+ | alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44351672_551274411976028_2657043464260157440_n.png?_nc_cat=102&oh=ebd37b04550aef2d5e8d2f15364d230b&oe=5C50AC06"><img | ||
+ | border=0 width=480 height=auto id="Picture 7" | ||
+ | src="https://static.igem.org/mediawiki/2018/2/28/T--IIT_Kanpur--Model_7.png" | ||
+ | alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44203308_1781628528626872_7513042899114655744_n.png?_nc_cat=111&oh=9400d852e101215b021771e1a18d90f4&oe=5C3F00B1"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing align=center style='text-align:center'><span | ||
+ | style='font-size:16.0pt'>Fig.2 Effect of secretion efficiency on enzyme | ||
+ | production Fig.3 Effect of promoter strength on enzyme production</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>___________________________________________________________________________________________________________________________</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><b><span style='font-size:18.0pt'>Enzyme Kinetics</span></b></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>We use the simple | ||
+ | Michaelis-Menten formula to describe our enzymes’ kinetics.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=252 | ||
+ | height=80 id="Picture 1" src="https://static.igem.org/mediawiki/2018/9/97/T--IIT_Kanpur--Model_8.png"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span><span | ||
+ | style='font-size:16.0pt'><img border=0 width=178 height=93 id="Picture 10" | ||
+ | src="https://static.igem.org/mediawiki/2018/f/f6/T--IIT_Kanpur--Model_9.png"> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Here, <em><span | ||
+ | style='font-family:"Calibri",sans-serif'>V</span></em><sub>max</sub> represents | ||
+ | the maximum velocity achieved by the system, at maximum (saturating) substrate | ||
+ | concentrations. <em><span style='font-family:"Calibri",sans-serif'>K<sub>M</sub></span></em> | ||
+ | (the Michaelis constant; sometimes represented as <em><span style='font-family: | ||
+ | "Calibri",sans-serif'>K<sub>S</sub></span></em> instead) is the substrate | ||
+ | concentration at which the reaction velocity is 50% of the <em><span | ||
+ | style='font-family:"Calibri",sans-serif'>V</span></em><sub>max</sub>. [<em><span | ||
+ | style='font-family:"Calibri",sans-serif'>S</span></em>] is the concentration of | ||
+ | the substrate <em><span style='font-family:"Calibri",sans-serif'>S</span></em>.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Our enzyme (E) being SDS, | ||
+ | substrate S being SdsA1 and P being our final product 1-Dodecanol.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=511 | ||
+ | height=59 id="Picture 11" src="https://static.igem.org/mediawiki/2018/1/14/T--IIT_Kanpur--Model_10.png"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Here k1 is rate of forward | ||
+ | and k-1 being rate of backword reactions and k2 being rate of product | ||
+ | formation.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>In terms of specific </span><span | ||
+ | style='font-size:16.0pt'>Michaelis-Menten reaction, these constants are quoted | ||
+ | in the literature as:</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=254 | ||
+ | height=145 id="Picture 13" src="https://static.igem.org/mediawiki/2018/7/78/T--IIT_Kanpur--Model_11.png"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>We assumed an average SDS concentration | ||
+ | of 5-10 mg/L in domestic wastewater discharges. </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>____________________________________________________________________________________________________________________________________________________________________________________</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><b><span style='font-size:18.0pt'>Continuous Culture | ||
+ | Modelling</span></b></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><b><span style='font-size:18.0pt'> </span></b></p> | ||
+ | |||
+ | <p class=MsoNoSpacing align=center style='margin-left:36.0pt;text-align:center'><span | ||
+ | style='font-size:16.0pt'><img border=0 width=304 height=377 id="Picture 2" | ||
+ | src="https://static.igem.org/mediawiki/2018/9/9a/T--IIT_Kanpur--af2.png" | ||
+ | alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44236260_489616118186439_8807087846427983872_n.png?_nc_cat=105&oh=12547d5feeea7af7a9a5ca9f30244400&oe=5C52B499"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing align=center style='text-align:center'><span | ||
+ | style='font-size:16.0pt'>Fig4. Our SDS biodegradation chemostat illustration.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>In order to understand if | ||
+ | our project could be implemented in a real world we decided to check its | ||
+ | economic sustainability by trying to estimate the yearly cost of operation of | ||
+ | our bioreactor.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>To do so we implement a | ||
+ | model based on previous model developed by iGEM 2017 Manchester team who were | ||
+ | trying to estimate cost of chemostat operation for cleaning Phosphate in wastewater.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>The growth of bacteria in | ||
+ | its exponential phase can be represented in the following exponential growth | ||
+ | equation:</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=672 | ||
+ | height=66 id="Picture 25" src="https://static.igem.org/mediawiki/2018/f/f2/T--IIT_Kanpur--Model_13.png"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>where: <br> | ||
+ | <span class=mi><i>x</i></span></span></span></span></span></span></nobr></span> | ||
+ | is the <i>bacteria concentration</i> (dry weight mass/unit volume) at time <span | ||
+ | class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-3-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-36><span style='display:inline-block'><span style='clip:rect(1.851em, 1000em, 2.834em, -1000em)'><span | ||
+ | id=MathJax-Span-37><span id=MathJax-Span-38>t</span></i></span></span><span | ||
+ | style='display:inline-block'><br> | ||
+ | </span></span></span></span></nobr></span><span class=mo></span><i><span | ||
+ | style='color:inherit'><span id=MathJax-Element-4-Frame><nobr><span role=math | ||
+ | style='display:inline-block' id=MathJax-Span-39><span style='display:inline-block'><span | ||
+ | style='clip:rect(2.035em, 1000em, 3.039em, -1000em)'><span id=MathJax-Span-40><span | ||
+ | id=MathJax-Span-41><span id=MathJax-Span-42><span id=MathJax-Span-43>μ</span></i></span></span></span></span></span></span></span></nobr></span> | ||
+ | is the <i>specific growth rate</i><br> | ||
+ | <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-5-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-44><span style='display:inline-block'><span style='clip:rect(1.563em, 1000em, 2.692em, -1000em)'><span | ||
+ | id=MathJax-Span-45><span id=MathJax-Span-46><span style='display:inline-block'><span | ||
+ | style='clip:rect(3.176em, 1000em, 4.158em, -1000em)'><span id=MathJax-Span-47>t</span></span><span | ||
+ | id=MathJax-Span-48>d<span style='display:inline-block;overflow:hidden'></i></span></span></span></span></span></span></span></span></span></nobr></span> | ||
+ | is the <i>doubling time</i> (time required for the concentration of organism to | ||
+ | double)</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Monod showed that there is | ||
+ | a relationship between the specific growth rate and the concentration of a | ||
+ | limiting growth substrate that can be represented in this equation:</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=622 | ||
+ | height=76 id="Picture 26" src="https://static.igem.org/mediawiki/2018/7/77/T--IIT_Kanpur--Model_14.png"></span><span | ||
+ | style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=81 | ||
+ | height=43 id="Picture 17" src="https://static.igem.org/mediawiki/2018/4/44/T--IIT_Kanpur--Model_15.png"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>where: <br> | ||
+ | <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-7-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-80><span style='display:inline-block'><span style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span | ||
+ | id=MathJax-Span-81><span id=MathJax-Span-82>s</span></i></span></span></span></span></span></nobr></span> | ||
+ | the <i>concentration of a limiting growth substrate</i><br> | ||
+ | <span class=mo></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-8-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-83><span style='display:inline-block'><span style='clip:rect(1.747em, 1000em, 2.794em, -1000em)'><span | ||
+ | id=MathJax-Span-84><span id=MathJax-Span-85><span style='display:inline-block'><span | ||
+ | style='clip:rect(3.36em, 1000em, 4.363em, -1000em)'><span id=MathJax-Span-86><span | ||
+ | id=MathJax-Span-87><span id=MathJax-Span-88>μ</span></i></span></span></span><span | ||
+ | class=mi><i></span><span id=MathJax-Span-89><span id=MathJax-Span-90><span | ||
+ | id=MathJax-Span-91>m</span><span id=MathJax-Span-92>a</span><span | ||
+ | id=MathJax-Span-93>x</span></i></span></span></span></span></span></span></span></span></span></nobr></span> | ||
+ | is the <i>maximum growth rate</i> (growth rate when organism is placed in | ||
+ | excess nutrients without any limiting factors) </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span class=mi><i><span style='font-size:16.0pt'>K</span></span><span | ||
+ | id=MathJax-Span-98>s</span></span></i><span style='display:inline-block'></span><i><span | ||
+ | style='font-size:16.0pt'></span></span></span></span></span></span></span></nobr></span> | ||
+ | </span></i><span style='font-size:16.0pt'>is the <i>saturation constant</i> – | ||
+ | the value of <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-10-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-99><span style='display:inline-block'><span style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span | ||
+ | id=MathJax-Span-100><span id=MathJax-Span-101>s</span></i></span></span></span></span></span></nobr></span> | ||
+ | when: </span><span | ||
+ | style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Bacterial growth and | ||
+ | utilization of substrate is depicted by the Monod by the equation:</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=600 | ||
+ | height=75 id="Picture 27" src="https://static.igem.org/mediawiki/2018/0/09/T--IIT_Kanpur--Model_16.png"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>where <i>Y</i> is known as | ||
+ | the <i>yield constant</i>.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=253 | ||
+ | height=66 id="Picture 20" src="https://static.igem.org/mediawiki/2018/c/c8/T--IIT_Kanpur--Model_17.png"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>In the chemostat fresh | ||
+ | growth medium is added into the vessel at a <i>steady flow-rate</i> (<span | ||
+ | class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-19-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-180><span style='display:inline-block'><span style='clip:rect(1.797em, 1000em, 2.823em, -1000em)'><span | ||
+ | id=MathJax-Span-181><span id=MathJax-Span-182>F<span style='display:inline-block; | ||
+ | overflow:hidden'></i></span></span></span></span></span></span></span></nobr></span>) | ||
+ | and culture liquid exits at the same rate and the growth medium is uniformly | ||
+ | dispersed. The rate of nutrient is exchange is given by the <i>dilution rate</i> | ||
+ | (<span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-20-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-183><span style='display:inline-block'><span style='clip:rect(1.794em, 1000em, 2.823em, -1000em)'><span | ||
+ | id=MathJax-Span-184><span id=MathJax-Span-185>D</span></i></span></span></span></span></span></nobr></span>):</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=602 | ||
+ | height=63 id="Picture 28" src="https://static.igem.org/mediawiki/2018/9/9b/T--IIT_Kanpur--Model_18.png"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Assuming every organism | ||
+ | will have an equal probability of leaving the vessel within a given time. The <i>wash-out | ||
+ | rate</i> (rate in which organism initially present in the vessel will be washed | ||
+ | out) can be expressed as:</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=602 | ||
+ | height=65 id="Picture 29" src="https://static.igem.org/mediawiki/2018/7/72/T--IIT_Kanpur--Model_19.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>where <span class=mi></span><i><span | ||
+ | style='color:inherit'><span id=MathJax-Element-23-Frame><nobr><span role=math | ||
+ | style='display:inline-block' id=MathJax-Span-226><span style='display:inline-block'><span | ||
+ | style='clip:rect(2.035em, 1000em, 2.834em, -1000em)'><span id=MathJax-Span-227><span | ||
+ | id=MathJax-Span-228>x</span></i></span></span></span></span></span></nobr></span> | ||
+ | is the concentration of organisms in the vessel</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><b><span style='font-size:16.0pt'>1. Changes in | ||
+ | concentration of organism</span></b></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>In a continuous culture, combining | ||
+ | growth (1) and washout rate (5) we have the net rate of increase is therefore:</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=595 | ||
+ | height=49 id="Picture 39" src="https://static.igem.org/mediawiki/2018/0/0e/T--IIT_Kanpur--Model_20.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=601 | ||
+ | height=70 id="Picture 30" src="https://static.igem.org/mediawiki/2018/a/a8/T--IIT_Kanpur--Model_21.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><b><span style='font-size:16.0pt'> </span></b></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><b><span style='font-size:16.0pt'>2. Changes in substrate | ||
+ | concentration</span></b></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Assuming substrate enters | ||
+ | the vessel at a concentration <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-33-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-347><span style='display:inline-block'><span style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span | ||
+ | id=MathJax-Span-348><span id=MathJax-Span-349><span style='display:inline-block'><span | ||
+ | style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span id=MathJax-Span-350>S</span></span><span | ||
+ | id=MathJax-Span-351><span id=MathJax-Span-352><span id=MathJax-Span-353>i</span><span | ||
+ | id=MathJax-Span-354>n</span></i></span></span></span></span></span></span></span></span></span></nobr></span>, | ||
+ | consumed by the bacterial cell in the vessel and then exits the vessel at | ||
+ | concentration <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-34-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-355><span style='display:inline-block'><span style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span | ||
+ | id=MathJax-Span-356><span id=MathJax-Span-357><span style='display:inline-block'><span | ||
+ | style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span id=MathJax-Span-358>S</span></span><span | ||
+ | id=MathJax-Span-359><span id=MathJax-Span-360><span id=MathJax-Span-361>o</span><span | ||
+ | id=MathJax-Span-362>u</span><span id=MathJax-Span-363>t</span></i></span></span></span></span></span></span></span></span></span></nobr></span>. | ||
+ | The net rate of change is therefore:</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=414 | ||
+ | height=87 id="Picture 35" src="https://static.igem.org/mediawiki/2018/7/78/T--IIT_Kanpur--Model_22.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=602 | ||
+ | height=226 id="Picture 32" src="https://static.igem.org/mediawiki/2018/4/41/T--IIT_Kanpur--Model_23.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>When <span class=mi></span><i><span | ||
+ | style='color:inherit'><span id=MathJax-Element-45-Frame><nobr><span role=math | ||
+ | style='display:inline-block' id=MathJax-Span-545><span style='display:inline-block'><span | ||
+ | style='clip:rect(1.272em, 1000em, 2.951em, -1000em)'><span id=MathJax-Span-546><span | ||
+ | id=MathJax-Span-547><span style='display:inline-block'><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span | ||
+ | id=MathJax-Span-548><span id=MathJax-Span-549>d</span><span | ||
+ | id=MathJax-Span-550>x</span></span></span><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span | ||
+ | id=MathJax-Span-551><span id=MathJax-Span-552>/d</span><span | ||
+ | id=MathJax-Span-553>t</span></i></span></span></span></span></span></span></span></span></span></nobr></span> | ||
+ | and <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-46-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-554><span style='display:inline-block'><span style='clip:rect(1.273em, 1000em, 2.951em, -1000em)'><span | ||
+ | id=MathJax-Span-555><span id=MathJax-Span-556><span style='display:inline-block'><span | ||
+ | style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span id=MathJax-Span-557><span | ||
+ | id=MathJax-Span-558>d</span><span id=MathJax-Span-559>s</span></span></span><span | ||
+ | style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span id=MathJax-Span-560><span | ||
+ | id=MathJax-Span-561>/d</span><span id=MathJax-Span-562>t</span></i></span></span></span></span></span></span></span></span></span></nobr></span> | ||
+ | is 0, the system is said to be in a ‘steady state’ because the concentration of | ||
+ | organism and substrate within the continuous culture is kept constant. The | ||
+ | values of steady state <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-47-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-563><span style='display:inline-block'><span style='clip:rect(2.035em, 1000em, 2.834em, -1000em)'><span | ||
+ | id=MathJax-Span-564><span id=MathJax-Span-565>x</span></i></span></span></span></span></span></nobr></span> | ||
+ | and <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-48-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-566><span style='display:inline-block'><span style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span | ||
+ | id=MathJax-Span-567><span id=MathJax-Span-568>s</span></i></span></span></span></span></span></nobr></span>, | ||
+ | designated as <em><span style='font-family:"Calibri",sans-serif'></span><span | ||
+ | style='color:inherit'><span id=MathJax-Element-49-Frame><nobr><span role=math | ||
+ | style='display:inline-block' id=MathJax-Span-569><span style='display:inline-block'><span | ||
+ | style='clip:rect(1.5em, 1000em, 2.546em, -1000em)'><span id=MathJax-Span-570><span | ||
+ | id=MathJax-Span-571><span id=MathJax-Span-572><span id=MathJax-Span-573><span | ||
+ | style='display:inline-block'><span style='clip:rect(3.36em, 1000em, 4.158em, -1000em)'><span | ||
+ | id=MathJax-Span-574>x~ and s~</span></em> are expressed as:</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=602 | ||
+ | height=125 id="Picture 33" src="https://static.igem.org/mediawiki/2018/6/66/T--IIT_Kanpur--Model_24.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>So the two parameters D | ||
+ | and <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-54-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-686><span style='display:inline-block'><span style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span | ||
+ | id=MathJax-Span-687><span id=MathJax-Span-688><span style='display:inline-block'><span | ||
+ | style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span id=MathJax-Span-689>S</span></span><span | ||
+ | id=MathJax-Span-690><span id=MathJax-Span-691><span id=MathJax-Span-692>i</span><span | ||
+ | id=MathJax-Span-693>n</span></i></span></span></span></span></span></span></span></span></span></nobr></span> | ||
+ | control the steady state within the chemostat. Since we have been also using | ||
+ | E.coli for SDS degradation we use values constants of (growth constant <span | ||
+ | id=MathJax-Element-55-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-694><span style='display:inline-block'><span style='clip:rect(1.747em, 1000em, 2.794em, -1000em)'><span | ||
+ | id=MathJax-Span-695><span id=MathJax-Span-696><span style='display:inline-block'><span | ||
+ | style='clip:rect(3.36em, 1000em, 4.363em, -1000em)'><span id=MathJax-Span-697><span | ||
+ | id=MathJax-Span-698><span id=MathJax-Span-699>) <span class=mo><i>μ</i></span></span></span><span | ||
+ | class=mi><i></span></span><span id=MathJax-Span-700><span id=MathJax-Span-701><span | ||
+ | id=MathJax-Span-702>m</span><span id=MathJax-Span-703>a</span><span | ||
+ | id=MathJax-Span-704>x</span></i></span></span></span></span></span></span></span></span></span></nobr></span>, | ||
+ | <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-56-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-705><span style='display:inline-block'><span style='clip:rect(1.506em, 1000em, 2.692em, -1000em)'><span | ||
+ | id=MathJax-Span-706><span id=MathJax-Span-707><span style='display:inline-block'><span | ||
+ | style='clip:rect(3.119em, 1000em, 4.147em, -1000em)'><span id=MathJax-Span-708>K</span></span><span | ||
+ | id=MathJax-Span-709>s</span></i><span style='display:inline-block'></span></span></span></span></span></span></span></span></nobr></span> | ||
+ | and <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-57-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-710><span style='display:inline-block'><span style='clip:rect(1.794em, 1000em, 2.822em, -1000em)'><span | ||
+ | id=MathJax-Span-711><span id=MathJax-Span-712>Y<span style='display:inline-block; | ||
+ | overflow:hidden'></i></span></span></span></span></span></span></span></nobr></span> | ||
+ | same as used by team iGEM Manchester 2017.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>We use values of these | ||
+ | constants as referenced here by iGEM Manchester 2017.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=602 | ||
+ | height=259 id="Picture 34" src="https://static.igem.org/mediawiki/2018/8/87/T--IIT_Kanpur--Model_25.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Finally output is modelled | ||
+ | through the equation:</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=414 | ||
+ | height=87 id="Picture 36" src="https://static.igem.org/mediawiki/2018/3/33/T--IIT_Kanpur--Model_26.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>So there two design | ||
+ | parameters in our bioreactor design model required for consideration.<span | ||
+ | class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-71-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-1045><span style='display:inline-block'><span style='clip:rect(1.705em, 1000em, 2.7em, -1000em)'><span | ||
+ | id=MathJax-Span-1046><span id=MathJax-Span-1047> D (dilution rate) and Sin (initial substrate concentration)</span></i></span></span></span></span></span></nobr></span> | ||
+ | <i></i> <span class=mi></span><i><span style='color:inherit'><span | ||
+ | id=MathJax-Element-72-Frame><nobr><span role=math style='display:inline-block' | ||
+ | id=MathJax-Span-1048><span style='display:inline-block'><span style='clip:rect(1.32em, 1000em, 2.494em, -1000em)'><span | ||
+ | id=MathJax-Span-1049><span id=MathJax-Span-1050><span style='display:inline-block'><span | ||
+ | style='clip:rect(3.137em, 1000em, 4.176em, -1000em)'><span | ||
+ | id=MathJax-Span-1051></span></span><span id=MathJax-Span-1052><span | ||
+ | id=MathJax-Span-1053><span id=MathJax-Span-1054></span><span | ||
+ | id=MathJax-Span-1055></span></i></span></span></span></span></span></span></span></span></span></nobr></span> | ||
+ | <i></i></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>Cost Estimation</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>In order to achieve | ||
+ | economically viable bioreactor we need to use a cheap easily available source | ||
+ | of growth medium like molasses.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>-Molasses cost $0.07/kg</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>-The density of molasses | ||
+ | is roughly 1.4 kg/L</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>-Therefore, 1 L of | ||
+ | molasses will cost $0.07 x 1.4 = $0.098</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=438 | ||
+ | height=66 id="Picture 37" src="https://static.igem.org/mediawiki/2018/3/33/T--IIT_Kanpur--Model_26.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=433 | ||
+ | height=148 id="Picture 38" src="https://static.igem.org/mediawiki/2018/6/6a/T--IIT_Kanpur--Model_27.jpg"></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>1-Dodecanol manufactured | ||
+ | by conventional methods usually is contaminated by long carbon chain compounds, | ||
+ | hence are associated with expensive purification costs. The low downstream | ||
+ | processing costs of our final product 1-dodecanol obtained from bacterial | ||
+ | degradation of SDS may help us cut down our costs, hence this could lead to development | ||
+ | of a economically viable product.</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>A rough | ||
+ | estimate of price of operation can be given by based on the substrate consumption and enzyme production rate</span></p> | ||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=592 | ||
+ | height=46 id="Picture 38" src="https://static.igem.org/mediawiki/2018/3/3c/T--IIT_Kanpur--M22.png"></span></p> | ||
+ | |||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'>___________________________________________________________________________________________________________________________</span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><i><span style='font-size:16.0pt'>References:</span></i></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size: | ||
+ | 16.0pt;color:windowtext'>1.Towards the Identification of Type II Secretion | ||
+ | Signals in a Nonacylated Variant of Pullulanase from Klebsiella oxytoca (2005), | ||
+ | Olivera Francetić and Anthony P. Pugsley.</span></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size: | ||
+ | 16.0pt;color:windowtext'>2.http://www.bg.ic.ac.uk/research/g.stan/2010_Course_MiB_article.pdf, | ||
+ | Accessed 04/08/2017.</span></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size: | ||
+ | 16.0pt;color:windowtext'>3.</span></span><span class=MsoSubtleEmphasis><span | ||
+ | style='font-size:16.0pt;color:windowtext'>Commercial Laundry Water CharacterisationJ. | ||
+ | K. Braga*, M. B. A. Varesche</span></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size: | ||
+ | 16.0pt;color:windowtext'>Department of Hydraulics and Sanitation, Engineering | ||
+ | School of São Carlos, São Paulo University, </span></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size: | ||
+ | 16.0pt;color:windowtext'>São Carlos, Brazil</span></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size: | ||
+ | 16.0pt;color:windowtext'>4.Guy-Bart Stan. Modelling in Biology. Lecture notes, | ||
+ | 2017. </span></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size: | ||
+ | 16.0pt;color:windowtext'>5.https://math.la.asu.edu/~halsmith/bacteriagrow.pdf</span></span></p> | ||
+ | |||
+ | <p class=MsoNoSpacing><span style='font-size:16.0pt'> </span></p> | ||
+ | |||
+ | <p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | <p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | <p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | <p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | <p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | <p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | <p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | <p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | <p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'> </span></p> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | </body> | ||
+ | |||
+ | </html> | ||
+ | |||
{{Template:IIT_Kanpur/Footer}} | {{Template:IIT_Kanpur/Footer}} |
Latest revision as of 05:40, 8 December 2018
Modelling
Overview
Mathematical modelling is
fundamental to synthetic biology, a tool that allows for deeper understanding
of biological systems, acting as a link between the conception and the physical
realisation of a biological circuit. Being able stimulate and understand our
system behaviour before actual implementation saves both time and resources.
Through our modelling we tried to gain insight into our system so that we could improve it and make it realistically achievable.
We tried to describe the
whole system with a mathematical system of linear ODEs which could
characterizes the expression and secretion of all enzymes, the associated
substrate – enzyme kinetics.
In order to realize the long term goal of developing a detergent biodegradation device for household and commercial use we tried to implement continuous culture modelling on our bioreactor design in order to estimate yearly cost of detergent biodegradation.
_________________________________________________________________________________________________________________________
Single Cell Modelling
Single Cell Modelling allows to model our gene regulatory network (GRN) and the extracellular secretion of our enzyme alkyl sulfatase (SdsA1).
This model helped us gain
insight into our system in order to understand dependence of rate of secretion
of alkyl sulfatase in media under varying promoter strengths and secretion
efficiencies due to the different secretion extracellular secretion tags PelB
and OmpT.
Our model is based on overexpression of alkyl sulfatase under constitutive promoters from Anderson promoter collection in iGEM registry. The concentration of our enzyme SdsA1 is then predicted using the rates of transcription, translation and degradation (of both mRNA and protein) that are known in literature.
Since under a constitutive gene expression is unregulated, it is always on and its strength could be modelled through the transcription rate constant k1.
Using the law of mass action
1. Transcription rate k1 is estimated from literature.
2. Translation rate k2 is estimated from the literature
3. mRNA degradation (d1) and Protein degradation rate (d2) are known for Ecoli through literature.
Since SdsA1 (alkyl sulfatase) a extracellular enzyme, it was essential to understand effect of secretion efficiencies of our enzyme from Ecoli cells, in order to determine concentration of SdsA1 in the media, which would be needed to model our enzyme substrate kinetics in order to understand SDS(Sodium Dodecyl Sulfate ) degradation.
We tried to model our protein secretion using a empirical secretion law used by iGEM Stuttgart 2017 team.
rsecretion : secretion rate
[enzyme] : enzyme concentration
s : secretion efficiency
t : time
Here the secretion efficiency is a value between zero and one.
Since reliable data on expression of SdsA1 and its extracellular expression in Ecoli was not available we concluded that our model could only provide a qualitative understanding various factors on these.
Fig 1.Simbiology implementation of our Model
Fig.2 Effect of secretion efficiency on enzyme production Fig.3 Effect of promoter strength on enzyme production
___________________________________________________________________________________________________________________________
Enzyme Kinetics
We use the simple Michaelis-Menten formula to describe our enzymes’ kinetics.
Here, Vmax represents the maximum velocity achieved by the system, at maximum (saturating) substrate concentrations. KM (the Michaelis constant; sometimes represented as KS instead) is the substrate concentration at which the reaction velocity is 50% of the Vmax. [S] is the concentration of the substrate S.
Our enzyme (E) being SDS, substrate S being SdsA1 and P being our final product 1-Dodecanol.
Here k1 is rate of forward and k-1 being rate of backword reactions and k2 being rate of product formation.
In terms of specific Michaelis-Menten reaction, these constants are quoted in the literature as:
We assumed an average SDS concentration of 5-10 mg/L in domestic wastewater discharges.
____________________________________________________________________________________________________________________________________________________________________________________
Continuous Culture Modelling
Fig4. Our SDS biodegradation chemostat illustration.
In order to understand if our project could be implemented in a real world we decided to check its economic sustainability by trying to estimate the yearly cost of operation of our bioreactor.
To do so we implement a model based on previous model developed by iGEM 2017 Manchester team who were trying to estimate cost of chemostat operation for cleaning Phosphate in wastewater.
The growth of bacteria in its exponential phase can be represented in the following exponential growth equation:
where:
x
is the bacteria concentration (dry weight mass/unit volume) at time
Monod showed that there is a relationship between the specific growth rate and the concentration of a limiting growth substrate that can be represented in this equation:
where:
Ks
is the saturation constant –
the value of
Bacterial growth and utilization of substrate is depicted by the Monod by the equation:
where Y is known as the yield constant.
In the chemostat fresh
growth medium is added into the vessel at a steady flow-rate (
Assuming every organism will have an equal probability of leaving the vessel within a given time. The wash-out rate (rate in which organism initially present in the vessel will be washed out) can be expressed as:
where
1. Changes in concentration of organism
In a continuous culture, combining growth (1) and washout rate (5) we have the net rate of increase is therefore:
2. Changes in substrate concentration
Assuming substrate enters
the vessel at a concentration
When
So the two parameters D
and
We use values of these constants as referenced here by iGEM Manchester 2017.
Finally output is modelled through the equation:
So there two design
parameters in our bioreactor design model required for consideration.
Cost Estimation
In order to achieve economically viable bioreactor we need to use a cheap easily available source of growth medium like molasses.
-Molasses cost $0.07/kg
-The density of molasses is roughly 1.4 kg/L
-Therefore, 1 L of molasses will cost $0.07 x 1.4 = $0.098
1-Dodecanol manufactured by conventional methods usually is contaminated by long carbon chain compounds, hence are associated with expensive purification costs. The low downstream processing costs of our final product 1-dodecanol obtained from bacterial degradation of SDS may help us cut down our costs, hence this could lead to development of a economically viable product.
A rough estimate of price of operation can be given by based on the substrate consumption and enzyme production rate
___________________________________________________________________________________________________________________________
References:
1.Towards the Identification of Type II Secretion Signals in a Nonacylated Variant of Pullulanase from Klebsiella oxytoca (2005), Olivera Francetić and Anthony P. Pugsley.
2.http://www.bg.ic.ac.uk/research/g.stan/2010_Course_MiB_article.pdf, Accessed 04/08/2017.
3.Commercial Laundry Water CharacterisationJ. K. Braga*, M. B. A. Varesche
Department of Hydraulics and Sanitation, Engineering School of São Carlos, São Paulo University,
São Carlos, Brazil
4.Guy-Bart Stan. Modelling in Biology. Lecture notes, 2017.
5.https://math.la.asu.edu/~halsmith/bacteriagrow.pdf