Difference between revisions of "Team:IIT Kanpur/Model"

 
(22 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{Template:IIT_Kanpur}}
 
{{Template:IIT_Kanpur}}
 
<html>
 
<html>
 
+
<div id="whiteBox" style="width: auto;  padding: 10px; height: auto; margin-left: 0px;
 +
    margin-right: 0px; position: absolute; top: 0px; left: 8%; right: 8%; z-index:-1;">
 
<head>
 
<head>
 
<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
 
<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
Line 11: Line 12:
 
{font-family:"Cambria Math";
 
{font-family:"Cambria Math";
 
panose-1:2 4 5 3 5 4 6 3 2 4;}
 
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
 
{font-family:"Calibri Light";
 
panose-1:2 15 3 2 2 2 4 3 2 4;}
 
 
@font-face
 
@font-face
 
{font-family:Calibri;
 
{font-family:Calibri;
 
panose-1:2 15 5 2 2 2 4 3 2 4;}
 
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
 
{font-family:MathJax_Math;
 
panose-1:0 0 0 0 0 0 0 0 0 0;}
 
 
  /* Style Definitions */
 
  /* Style Definitions */
 
  p.MsoNormal, li.MsoNormal, div.MsoNormal
 
  p.MsoNormal, li.MsoNormal, div.MsoNormal
Line 69: Line 64:
 
span.MsoPlaceholderText
 
span.MsoPlaceholderText
 
{color:gray;}
 
{color:gray;}
 +
p.MsoNoSpacing, li.MsoNoSpacing, div.MsoNoSpacing
 +
{margin:0cm;
 +
margin-bottom:.0001pt;
 +
font-size:11.0pt;
 +
font-family:"Calibri",sans-serif;}
 
span.MsoSubtleEmphasis
 
span.MsoSubtleEmphasis
 
{color:#404040;
 
{color:#404040;
Line 102: Line 102:
 
div.WordSection1
 
div.WordSection1
 
{page:WordSection1;}
 
{page:WordSection1;}
 +
/* List Definitions */
 +
ol
 +
{margin-bottom:0cm;}
 +
ul
 +
{margin-bottom:0cm;}
 
-->
 
-->
 
</style>
 
</style>
Line 111: Line 116:
 
<div class=WordSection1>
 
<div class=WordSection1>
  
<p class=MsoNormal align=center style='text-align:center'><span
+
<p class=MsoNormal><span style='font-size:72.0pt;line-height:107%'>&nbsp;</span></p>
style='font-size:72.0pt;line-height:107%;color:#1F4E79'>&nbsp;</span></p>
+
  
 
<p class=MsoNormal align=center style='text-align:center'><span
 
<p class=MsoNormal align=center style='text-align:center'><span
style='font-size:72.0pt;line-height:107%;color:#1F4E79'>&nbsp;</span></p>
+
style='font-size:72.0pt;line-height:107%'>Modelling</span></p>
  
 
<p class=MsoNormal align=center style='text-align:center'><span
 
<p class=MsoNormal align=center style='text-align:center'><span
style='font-size:72.0pt;line-height:107%;color:#1F4E79'>Modelling</span></p>
+
style='font-size:18.0pt;line-height:107%'>&nbsp;</span></p>
  
<p class=MsoNormal align=center style='text-align:center'><span
+
<p class=MsoNoSpacing><b><span style='font-size:20.0pt'>Overview </span></b></p>
style='font-size:18.0pt;line-height:107%;color:#1F4E79'>&nbsp;</span></p>
+
  
<p class=MsoNormal><span style='font-size:20.0pt;line-height:107%'>Overview </span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Mathematical modelling is
 +
fundamental to synthetic biology, a tool that allows for deeper understanding
 +
of biological systems, acting as a link between the conception and the physical
 +
realisation of a biological circuit. Being able stimulate and understand our
 +
system behaviour before actual implementation saves both time and resources.<br>
 +
<br>
 +
</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Mathematical
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Through our modelling we
modelling is fundamental to synthetic biology, a tool that allows for deeper
+
tried to gain insight into our system so that we could improve it and make it
understanding of biological systems, acting as a link between the conception
+
realistically achievable.</span></p>
and the physical realisation of a biological circuit. Being able stimulate and
+
understand our system behaviour before actual implementation saves both time
+
and resources.</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>We tried to describe the
 
+
whole system with a mathematical system of linear ODEs which could
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Through our
+
modelling we tried to gain insight into our system so that we could improve it
+
and make it realistically achievable.</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>We tried to
+
describe the whole system with a mathematical system of linear ODEs which could
+
 
characterizes the expression and secretion of all enzymes, the associated
 
characterizes the expression and secretion of all enzymes, the associated
substrate – enzyme kinetics.</span></p>
+
substrate – enzyme kinetics.<br>
 +
<br>
 +
</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>In order to
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>In order to realize the
realize the long term goal of developing a detergent biodegradation device for
+
long term goal of developing a detergent biodegradation device for household
household and commercial use we tried to implement continuous culture modelling
+
and commercial use we tried to implement continuous culture modelling on our
on our bioreactor design in order to estimate yearly cost of detergent
+
bioreactor design in order to estimate yearly cost of detergent biodegradation.</span></p>
biodegradation.</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>­­­­­­­­­­­­­­­­­­­­­_________________________________________________________________________________________________________________________</span></p>
  
<p class=MsoNormal><span style='font-size:20.0pt;line-height:107%;color:#843C0C'>­­­­­­­­­­­­­­­­­­­­­_________________________________________________________________________________________________________________________</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><b><span style='font-size:18.0pt'>Single Cell Modelling</span></b></p>
  
<p class=MsoNormal><span style='font-size:20.0pt;line-height:107%'>Single Cell
+
<p class=MsoNoSpacing align=center style='text-align:center'><span
Modelling</span></p>
+
style='font-size:16.0pt'><img width=580 height=373 id="Picture 9"
 
+
src="https://static.igem.org/mediawiki/2018/2/25/T--IIT_Kanpur--af1.png"
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
width=580 height=373 id="Picture 9" src="Modelling444_files/image001.jpg"
+
 
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44177337_161118344832834_5155785162818060288_n.png?_nc_cat=110&amp;oh=9e7779a555a3f3b881a5adfaa566230f&amp;oe=5C581588"></span></p>
 
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44177337_161118344832834_5155785162818060288_n.png?_nc_cat=110&amp;oh=9e7779a555a3f3b881a5adfaa566230f&amp;oe=5C581588"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Allows to
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
model our gene regulatory network (GRN) and the extracellular secretion of our enzyme
+
alkyl sulfatase (SdsA1).</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>This model
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Single Cell Modelling allows
helped us gain insight into our system in order to understand dependence of
+
to model our gene regulatory network (GRN) and the extracellular secretion of
rate of secretion of alkyl sulfatase in media under varying promoter strengths
+
our enzyme alkyl sulfatase (SdsA1).</span></p>
and secretion efficiencies due to the different secretion extracellular
+
 
secretion tags PelB and OmpT.</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>This model helped us gain
 +
insight into our system in order to understand dependence of rate of secretion
 +
of alkyl sulfatase in media under varying promoter strengths and secretion
 +
efficiencies due to the different secretion extracellular secretion tags PelB
 +
and OmpT.<br>
 +
<br>
 +
</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Our model is
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Our model is based on
based on overexpression of alkyl sulfatase under constitutive promoters from Anderson
+
overexpression of alkyl sulfatase under constitutive promoters from Anderson
promoter collection in iGEM  registry. The concentration of our enzyme SdsA1 is
+
promoter collection in iGEM registry. The concentration of our enzyme SdsA1 is
 
then predicted using the rates of transcription, translation and degradation
 
then predicted using the rates of transcription, translation and degradation
 
(of both mRNA and protein) that are known in literature.</span></p>
 
(of both mRNA and protein) that are known in literature.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Since under
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
a constitutive gene expression is unregulated, it is always on and its strength
+
could be modelled through the transcription rate constant k1.</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Since under a constitutive
 +
gene expression is unregulated, it is always on and its strength could be
 +
modelled through the transcription rate constant k1.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
width=372 height=141 id="Picture 5" src="Modelling444_files/image002.png"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img width=372 height=141
 +
id="Picture 5" src="https://static.igem.org/mediawiki/2018/4/4e/T--IIT_Kanpur--Model_2.jpg"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%;color:#404040'>Using
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
the law of mass action</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Using the law of mass
 +
action</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
width=387 height=108 id="Picture 6" src="Modelling444_files/image003.png"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img width=387 height=108
 +
id="Picture 6" src="https://static.igem.org/mediawiki/2018/f/f6/T--IIT_Kanpur--Model_3.jpg"></span></p>
  
<p class=MsoNormal>1.Transcription rate k1 is estimated from literature.</p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal> </p>
+
<p class=MsoNoSpacing style='margin-left:36.0pt;text-indent:-18.0pt'><span
 +
style='font-size:16.0pt'>1.<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;
 +
</span></span><span style='font-size:16.0pt'>Transcription rate k1 is estimated
 +
from literature.</span></p>
  
<p class=MsoNormal>2.Translation rate k2 is estimated from the literature</p>
+
<p class=MsoNoSpacing style='text-indent:3.75pt'><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal>&nbsp;</p>
+
<p class=MsoNoSpacing style='margin-left:36.0pt;text-indent:-18.0pt'><span
 +
style='font-size:16.0pt'>2.<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;
 +
</span></span><span style='font-size:16.0pt'>Translation rate k2 is estimated from
 +
the literature</span></p>
  
<p class=MsoNormal>3.mRNA degradation (d1) and Protein degradation rate (d2)
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
are known for Ecoli through literature.</p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%;font-family:
+
<p class=MsoNoSpacing style='margin-left:36.0pt;text-indent:-18.0pt'><span
"Arial",sans-serif'>&nbsp;</span></p>
+
style='font-size:16.0pt'>3.<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;
 +
</span></span><span style='font-size:16.0pt'>mRNA degradation (d1) and Protein
 +
degradation rate (d2) are known for Ecoli through literature.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Since SdsA1 (alkyl
 
+
sulfatase) a extracellular enzyme, it was essential to understand effect of
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
secretion efficiencies of our enzyme from Ecoli cells, in order to determine
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Since SdsA1
+
(alkyl sulfatase) a extracellular enzyme, it was essential to understand effect
+
of secretion efficiencies of our enzyme from Ecoli cells, in order to determine
+
 
concentration of SdsA1 in the media, which would be needed to model our enzyme
 
concentration of SdsA1 in the media, which would be needed to model our enzyme
 
substrate kinetics in order to understand SDS(Sodium Dodecyl Sulfate )
 
substrate kinetics in order to understand SDS(Sodium Dodecyl Sulfate )
 
degradation.</span></p>
 
degradation.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>We tried to
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
model our protein secretion using a empirical secretion law used by iGEM Stuttgart
+
2017 team.</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>   </span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>We tried to model our
 +
protein secretion using a empirical secretion law used by iGEM Stuttgart 2017
 +
team.</span></p>
  
<p class=MsoNormal><a href="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"><span
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>   </span></p>
style='font-size:16.0pt;line-height:107%;color:windowtext;text-decoration:none'><img
+
 
border=0 width=479 height=70 id="Picture 4"
+
<p class=MsoNoSpacing><a
src="Modelling444_files/image004.png"
+
href="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"><span
 +
style='font-size:16.0pt;color:windowtext;text-decoration:none'><img border=0
 +
width=322 height=47 id="Picture 4" src="https://static.igem.org/mediawiki/2018/0/06/T--IIT_Kanpur--Model_4.jpg"
 
alt="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"></span></a></p>
 
alt="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"></span></a></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>r<sub>secretion</sub>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>r<sub>secretion</sub> :
: secretion rate </span></p>
+
secretion rate </span></p>
  
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>[enzyme] :
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>[enzyme] : enzyme
enzyme concentration </span></p>
+
concentration </span></p>
  
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>s :
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>s : secretion efficiency </span></p>
secretion efficiency </span></p>
+
  
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>t : time </span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>t : time </span></p>
  
<p class=MsoNormal>&nbsp;</p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Here the
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Here the secretion
secretion efficiency is a value between zero and one .</span></p>
+
efficiency is a value between zero and one.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Since reliable data on
 +
expression of SdsA1 and its extracellular expression in Ecoli was not available
 +
we concluded that our model could only provide a qualitative understanding
 +
various factors on these.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Since
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
reliable data on expression of SdsA1 and its extracellular expression in Ecoli
+
was not available we concluded that our model could only provide a qualitative
+
understanding various factors on these.</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing align=center style='text-align:center'><span
 
+
style='font-size:16.0pt'><img border=0 width=602 height=317 id="Picture 8"
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
src="https://static.igem.org/mediawiki/2018/a/a3/T--IIT_Kanpur--Model_5.jpg"
border=0 width=602 height=317 id="Picture 8"
+
src="Modelling444_files/image005.png"
+
 
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44185937_2064200740556003_6694159164534423552_n.png?_nc_cat=105&amp;oh=040a1b04709ea79fa27d8959210921b6&amp;oe=5C482425"></span></p>
 
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44185937_2064200740556003_6694159164534423552_n.png?_nc_cat=105&amp;oh=040a1b04709ea79fa27d8959210921b6&amp;oe=5C482425"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Fig 1.Simbiology
+
<p class=MsoNoSpacing align=center style='text-align:center'><span
implementation of our Model</span></p>
+
style='font-size:16.0pt'>Fig 1.Simbiology implementation of our Model<br><br></span></p>
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
border=0 width=560 height=363 id="Picture 2"
+
src="Modelling444_files/image006.png"
+
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44351672_551274411976028_2657043464260157440_n.png?_nc_cat=102&amp;oh=ebd37b04550aef2d5e8d2f15364d230b&amp;oe=5C50AC06"></span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Fig.2 Effect
+
of secretion efficiency on enzyme production</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing align=center style='text-align:center'><span
border=0 width=560 height=374 id="Picture 7"
+
style='font-size:16.0pt'><img border=0 width=480 height=auto margin-right=5px
src="Modelling444_files/image007.png"
+
src="https://static.igem.org/mediawiki/2018/d/de/T--IIT_Kanpur--Model_6.jpg"
 +
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44351672_551274411976028_2657043464260157440_n.png?_nc_cat=102&amp;oh=ebd37b04550aef2d5e8d2f15364d230b&amp;oe=5C50AC06"><img
 +
border=0 width=480 height=auto id="Picture 7"
 +
src="https://static.igem.org/mediawiki/2018/2/28/T--IIT_Kanpur--Model_7.png"
 
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44203308_1781628528626872_7513042899114655744_n.png?_nc_cat=111&amp;oh=9400d852e101215b021771e1a18d90f4&amp;oe=5C3F00B1"></span></p>
 
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44203308_1781628528626872_7513042899114655744_n.png?_nc_cat=111&amp;oh=9400d852e101215b021771e1a18d90f4&amp;oe=5C3F00B1"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Fig.3 Effect
+
<p class=MsoNoSpacing align=center style='text-align:center'><span
of promoter strength on enzyme production</span></p>
+
style='font-size:16.0pt'>Fig.2 Effect of secretion efficiency on enzyme
 +
production        Fig.3 Effect of promoter strength on enzyme production</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>­­­___________________________________________________________________________________________________________________________</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>­­­­­­­­</span><span
+
<p class=MsoNoSpacing><b><span style='font-size:18.0pt'>Enzyme Kinetics</span></b></p>
style='font-size:20.0pt;line-height:107%;color:#C00000'>___________________________________________________________________________________________________________________________</span></p>
+
  
<p class=MsoNormal><span style='font-size:18.0pt;line-height:107%'>Enzyme
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
Kinetics</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>We use the simple
 +
Michaelis-Menten formula to describe our enzymes’ kinetics.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>We use the
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=252
simple Michaelis-Menten formula to describe our enzymes’ kinetics.</span></p>
+
height=80 id="Picture 1" src="https://static.igem.org/mediawiki/2018/9/97/T--IIT_Kanpur--Model_8.png"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>     </span><span
border=0 width=252 height=80 id="Picture 1"
+
style='font-size:16.0pt'><img border=0 width=178 height=93 id="Picture 10"
src="Modelling444_files/image008.jpg"></span></p>
+
src="https://static.igem.org/mediawiki/2018/f/f6/T--IIT_Kanpur--Model_9.png"> </span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>     </span><span
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Here, <em><span
style='font-size:16.0pt;line-height:107%'><img border=0 width=178 height=93
+
id="Picture 10" src="Modelling444_files/image009.jpg"> </span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Here, <em><span
+
 
style='font-family:"Calibri",sans-serif'>V</span></em><sub>max</sub> represents
 
style='font-family:"Calibri",sans-serif'>V</span></em><sub>max</sub> represents
 
the maximum velocity achieved by the system, at maximum (saturating) substrate
 
the maximum velocity achieved by the system, at maximum (saturating) substrate
Line 331: Line 325:
 
the substrate <em><span style='font-family:"Calibri",sans-serif'>S</span></em>.</span></p>
 
the substrate <em><span style='font-family:"Calibri",sans-serif'>S</span></em>.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Our enzyme (E)
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
being SDS, substrate S being SdsA1 and P being our final product 1-Dodecanol.</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Our enzyme (E) being SDS,
border=0 width=511 height=59 id="Picture 11"
+
substrate S being SdsA1 and P being our final product 1-Dodecanol.</span></p>
src="Modelling444_files/image010.jpg"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Here k1 is
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=511
rate of forward and k-1 being rate of backword reactions and k2 being rate of
+
height=59 id="Picture 11" src="https://static.igem.org/mediawiki/2018/1/14/T--IIT_Kanpur--Model_10.png"></span></p>
product formation.</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>In terms of
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Here k1 is rate of forward
specific </span><span style='font-size:16.0pt;line-height:107%;font-family:
+
and k-1 being rate of backword reactions and k2 being rate of product
"Arial",sans-serif'>Michaelis-Menten reaction, these constants are quoted in
+
formation.</span></p>
the literature as:</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>In terms of specific </span><span
border=0 width=254 height=145 id="Picture 13"
+
style='font-size:16.0pt'>Michaelis-Menten reaction, these constants are quoted
src="Modelling444_files/image011.png"></span></p>
+
in the literature as:</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>We assumed a
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=254
average SDS concentration of 5-10 mg/L in domestic wastewater discharges. </span></p>
+
height=145 id="Picture 13" src="https://static.igem.org/mediawiki/2018/7/78/T--IIT_Kanpur--Model_11.png"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>We assumed an average SDS concentration
 +
of 5-10 mg/L in domestic wastewater discharges. </span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>____________________________________________________________________________________________________________________________________________________________________________________</span></p>
  
<p class=MsoNormal><span style='color:#C00000'>_____________________________________________________________________________________________________________________________</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><b><span style='font-size:18.0pt'>Continuous Culture
 +
Modelling</span></b></p>
  
<p class=MsoNormal><span style='font-size:18.0pt;line-height:107%'>Continuous
+
<p class=MsoNoSpacing><b><span style='font-size:18.0pt'>&nbsp;</span></b></p>
Culture Modelling</span></p>
+
  
<p class=MsoNormal><img width=273 height=339
+
<p class=MsoNoSpacing align=center style='margin-left:36.0pt;text-align:center'><span
src="Modelling444_files/image012.jpg" align=left hspace=12
+
style='font-size:16.0pt'><img border=0 width=304 height=377 id="Picture 2"
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44236260_489616118186439_8807087846427983872_n.png?_nc_cat=105&amp;oh=12547d5feeea7af7a9a5ca9f30244400&amp;oe=5C52B499"></p>
+
src="https://static.igem.org/mediawiki/2018/9/9a/T--IIT_Kanpur--af2.png"
 +
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44236260_489616118186439_8807087846427983872_n.png?_nc_cat=105&amp;oh=12547d5feeea7af7a9a5ca9f30244400&amp;oe=5C52B499"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing align=center style='text-align:center'><span
 +
style='font-size:16.0pt'>Fig4. Our SDS biodegradation chemostat illustration.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>In order to understand if
 +
our project could be implemented in a real world we decided to check its
 +
economic sustainability by trying to estimate the yearly cost of operation of
 +
our bioreactor.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>To do so we implement a
 +
model based on previous model developed by iGEM 2017 Manchester team who were
 +
trying to estimate cost of chemostat operation for cleaning Phosphate in wastewater.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>The growth of bacteria in
 
+
its exponential phase can be represented in the following exponential growth
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
equation:</span></p>
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Fig4. Our SDS
+
biodegradation chemostat illustration.</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>In order to
+
understand if our project could be implemented in a real world we decided to check
+
its economic sustainability by trying to estimate the yearly cost of operation of
+
our bioreactor.</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>To do so we
+
implement a model based on previous model developed by iGEM 2017 Manchester
+
team who were trying to estimate cost of chemostat operation for cleaning Phosphate
+
in wastewater.</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>The growth
+
of bacteria in its exponential phase can be represented in the following
+
exponential growth equation:</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=672
border=0 width=672 height=66 id="Picture 25"
+
height=66 id="Picture 25" src="https://static.igem.org/mediawiki/2018/f/f2/T--IIT_Kanpur--Model_13.png"></span></p>
src="Modelling444_files/image013.jpg"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>where: <br>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>where: <br>
</span><span class=mi><i><span style='font-size:16.0pt;line-height:107%;
+
<span class=mi><i>x</i></span></span></span></span></span></span></nobr></span>
font-family:"MathJax_Math",serif'>x</span></span></i></span></span><span
+
is the <i>bacteria concentration</i> (dry weight mass/unit volume) at time <span
style='font-size:16.0pt;line-height:107%'></span></span></span></nobr></span>
+
class=mi></span><i><span style='color:inherit'><span
is the <i>bacteria concentration</i> (dry weight mass/unit volume) at time </span><span
+
id=MathJax-Element-3-Frame><nobr><span role=math style='display:inline-block'
class=mi></span><i><span style='font-size:16.0pt;line-height:107%;font-family:
+
id=MathJax-Span-36><span style='display:inline-block'><span style='clip:rect(1.851em, 1000em, 2.834em, -1000em)'><span
"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
+
id=MathJax-Span-37><span id=MathJax-Span-38>t</span></i></span></span><span
id=MathJax-Span-36><span style='color:inherit'><span
+
style='display:inline-block'><br>
id=MathJax-Element-3-Frame><span style='display:inline-block'><span
+
</span></span></span></span></nobr></span><span class=mo></span><i><span
style='clip:rect(1.851em, 1000em, 2.834em, -1000em)'><span id=MathJax-Span-37><span
+
style='color:inherit'><span id=MathJax-Element-4-Frame><nobr><span role=math
id=MathJax-Span-38>t</span></span></span></i><span style='display:inline-block'></span><span
+
style='display:inline-block' id=MathJax-Span-39><span style='display:inline-block'><span
style='font-size:16.0pt;line-height:107%'></span><br>
+
style='clip:rect(2.035em, 1000em, 3.039em, -1000em)'><span id=MathJax-Span-40><span
</span></span></span></nobr></span></span><span class=mo></span><i><span
+
id=MathJax-Span-41><span id=MathJax-Span-42><span id=MathJax-Span-43>&#956;</span></i></span></span></span></span></span></span></span></nobr></span>
style='font-size:16.0pt;line-height:107%;font-family:"MathJax_Math",serif'><nobr><span
+
role=math style='display:inline-block' id=MathJax-Span-39><span
+
style='color:inherit'><span id=MathJax-Element-4-Frame><span style='display:
+
inline-block'><span style='clip:rect(2.035em, 1000em, 3.039em, -1000em)'><span
+
id=MathJax-Span-40><span id=MathJax-Span-41><span id=MathJax-Span-42><span
+
id=MathJax-Span-43>&#956;</span></span></span></i></span></span></span><span
+
style='font-size:16.0pt;line-height:107%'></span></span></span></nobr></span>
+
 
is the <i>specific growth rate</i><br>
 
is the <i>specific growth rate</i><br>
</span><span class=mi></span><i><span style='font-size:16.0pt;line-height:107%;
+
<span class=mi></span><i><span style='color:inherit'><span
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
+
id=MathJax-Element-5-Frame><nobr><span role=math style='display:inline-block'
id=MathJax-Span-44><span style='color:inherit'><span
+
id=MathJax-Span-44><span style='display:inline-block'><span style='clip:rect(1.563em, 1000em, 2.692em, -1000em)'><span
id=MathJax-Element-5-Frame><span style='display:inline-block'><span
+
id=MathJax-Span-45><span id=MathJax-Span-46><span style='display:inline-block'><span
style='clip:rect(1.563em, 1000em, 2.692em, -1000em)'><span id=MathJax-Span-45><span
+
style='clip:rect(3.176em, 1000em, 4.158em, -1000em)'><span id=MathJax-Span-47>t</span></span><span
id=MathJax-Span-46><span style='display:inline-block'><span style='clip:rect(3.176em, 1000em, 4.158em, -1000em)'><span
+
id=MathJax-Span-48>d<span style='display:inline-block;overflow:hidden'></i></span></span></span></span></span></span></span></span></span></nobr></span>
id=MathJax-Span-47>t</span></span><span id=MathJax-Span-48>d<span
+
style='display:inline-block;overflow:hidden'></span></i></span><span
+
style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></span></span></nobr></span>
+
 
is the <i>doubling time</i> (time required for the concentration of organism to
 
is the <i>doubling time</i> (time required for the concentration of organism to
 
double)</span></p>
 
double)</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Monod showed
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Monod showed that there is
that there is a relationship between the specific growth rate and the
+
a relationship between the specific growth rate and the concentration of a
concentration of a limiting growth substrate that can be represented in this
+
limiting growth substrate that can be represented in this equation:</span></p>
equation:</span></p>
+
 
 +
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=622
 +
height=76 id="Picture 26" src="https://static.igem.org/mediawiki/2018/7/77/T--IIT_Kanpur--Model_14.png"></span><span
 +
style='font-size:16.0pt'>     </span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>                       
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=81
</span><span style='font-size:16.0pt;line-height:107%'><img border=0 width=622
+
height=43 id="Picture 17" src="https://static.igem.org/mediawiki/2018/4/44/T--IIT_Kanpur--Model_15.png"></span></p>
height=76 id="Picture 26" src="Modelling444_files/image014.jpg"></span><span
+
style='font-size:16.0pt;line-height:107%'>     </span></p>
+
  
<p class=MsoNormal><img width=81 height=43 src="Modelling444_files/image015.jpg"
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>where: <br>
align=left hspace=12><span style='font-size:16.0pt;line-height:107%'>where: <br>
+
<span class=mi></span><i><span style='color:inherit'><span
<br>
+
id=MathJax-Element-7-Frame><nobr><span role=math style='display:inline-block'
</span><span class=mi></span><i><span style='font-size:16.0pt;line-height:107%;
+
id=MathJax-Span-80><span style='display:inline-block'><span style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
+
id=MathJax-Span-81><span id=MathJax-Span-82>s</span></i></span></span></span></span></span></nobr></span>
id=MathJax-Span-80><span style='color:inherit'><span
+
id=MathJax-Element-7-Frame><span style='display:inline-block'><span
+
style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span id=MathJax-Span-81><span
+
id=MathJax-Span-82>s</span></span></span></i><span style='display:inline-block'></span><span
+
style='font-size:16.0pt;line-height:107%'></span></span></span></span></nobr></span>
+
 
the <i>concentration of a limiting growth substrate</i><br>
 
the <i>concentration of a limiting growth substrate</i><br>
</span><span class=mo></span><i><span style='font-size:16.0pt;line-height:107%;
+
<span class=mo></span><i><span style='color:inherit'><span
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
+
id=MathJax-Element-8-Frame><nobr><span role=math style='display:inline-block'
id=MathJax-Span-83><span style='color:inherit'><span
+
id=MathJax-Span-83><span style='display:inline-block'><span style='clip:rect(1.747em, 1000em, 2.794em, -1000em)'><span
id=MathJax-Element-8-Frame><span style='display:inline-block'><span
+
id=MathJax-Span-84><span id=MathJax-Span-85><span style='display:inline-block'><span
style='clip:rect(1.747em, 1000em, 2.794em, -1000em)'><span id=MathJax-Span-84><span
+
style='clip:rect(3.36em, 1000em, 4.363em, -1000em)'><span id=MathJax-Span-86><span
id=MathJax-Span-85><span style='display:inline-block'><span style='clip:rect(3.36em, 1000em, 4.363em, -1000em)'><span
+
id=MathJax-Span-87><span id=MathJax-Span-88>&#956;</span></i></span></span></span><span
id=MathJax-Span-86><span id=MathJax-Span-87><span id=MathJax-Span-88>&#956;</span></span></span></i></span></span><span
+
class=mi><i></span><span id=MathJax-Span-89><span id=MathJax-Span-90><span
style='display:inline-block'><span class=mi></span><i><span style='font-size:
+
id=MathJax-Span-91>m</span><span id=MathJax-Span-92>a</span><span
16.0pt;line-height:107%;font-family:"MathJax_Math",serif'></span><span
+
id=MathJax-Span-93>x</span></i></span></span></span></span></span></span></span></span></span></nobr></span>
id=MathJax-Span-89><span id=MathJax-Span-90><span id=MathJax-Span-91>m</span><span
+
id=MathJax-Span-92>a</span><span id=MathJax-Span-93>x</span></span></span></i></span></span><span
+
style='display:inline-block'><span style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></span></nobr></span>
+
 
is the <i>maximum growth rate</i> (growth rate when organism is placed in
 
is the <i>maximum growth rate</i> (growth rate when organism is placed in
 
excess nutrients without any limiting factors) </span></p>
 
excess nutrients without any limiting factors) </span></p>
  
<p class=MsoNormal><span class=mi><i><span style='font-size:16.0pt;line-height:
+
<p class=MsoNoSpacing><span class=mi><i><span style='font-size:16.0pt'>K</span></span><span
107%;font-family:"MathJax_Math",serif'>K</span></span><span id=MathJax-Span-98>s</span></span></i><span
+
id=MathJax-Span-98>s</span></span></i><span style='display:inline-block'></span><i><span
style='display:inline-block'></span><i><span style='font-size:16.0pt;
+
style='font-size:16.0pt'></span></span></span></span></span></span></span></nobr></span>
line-height:107%'></span></span></span></span></span></span></span></nobr></span>
+
</span></i><span style='font-size:16.0pt'>is the <i>saturation constant</i> –
</span></i><span style='font-size:16.0pt;line-height:107%'>is the <i>saturation
+
the value of <span class=mi></span><i><span style='color:inherit'><span
constant</i> – the value of </span><span class=mi></span><i><span
+
id=MathJax-Element-10-Frame><nobr><span role=math style='display:inline-block'
style='font-size:16.0pt;line-height:107%;font-family:"MathJax_Math",serif'><nobr><span
+
id=MathJax-Span-99><span style='display:inline-block'><span style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span
role=math style='display:inline-block' id=MathJax-Span-99><span
+
id=MathJax-Span-100><span id=MathJax-Span-101>s</span></i></span></span></span></span></span></nobr></span>
style='color:inherit'><span id=MathJax-Element-10-Frame><span style='display:
+
when:                                             </span><span
inline-block'><span style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span
+
style='font-size:16.0pt'>               </span></p>
id=MathJax-Span-100><span id=MathJax-Span-101>s</span></span></span></i><span
+
style='display:inline-block'></span><span style='font-size:16.0pt;line-height:
+
107%'></span></span></span></span></nobr></span> when:                                             </span><span
+
style='font-size:16.0pt;line-height:107%'>               </span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Bacterial  growth and
 +
utilization of substrate is depicted by the Monod by the equation:</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=600
 +
height=75 id="Picture 27" src="https://static.igem.org/mediawiki/2018/0/09/T--IIT_Kanpur--Model_16.png"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Bacterial  growth
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>where <i>Y</i> is known as
and utilization of substrate is depicted by the Monod by the equation:</span></p>
+
the <i>yield constant</i>.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
border=0 width=600 height=75 id="Picture 27"
+
src="Modelling444_files/image016.png"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%;font-family:
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=253
"Times New Roman",serif'>where </span><i><span style='font-size:16.0pt;
+
height=66 id="Picture 20" src="https://static.igem.org/mediawiki/2018/c/c8/T--IIT_Kanpur--Model_17.png"></span></p>
line-height:107%;font-family:"MathJax_Math",serif'>Y</span></i><span
+
style='font-size:16.0pt;line-height:107%;font-family:"Times New Roman",serif'>
+
is known as the <i>yield constant</i>.</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Here</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>In the chemostat fresh
 +
growth medium is added into the vessel at a <i>steady flow-rate</i> (<span
 +
class=mi></span><i><span style='color:inherit'><span
 +
id=MathJax-Element-19-Frame><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-180><span style='display:inline-block'><span style='clip:rect(1.797em, 1000em, 2.823em, -1000em)'><span
 +
id=MathJax-Span-181><span id=MathJax-Span-182>F<span style='display:inline-block;
 +
overflow:hidden'></i></span></span></span></span></span></span></span></nobr></span>)
 +
and culture liquid exits at the same rate and the growth medium is uniformly
 +
dispersed. The rate of nutrient is exchange is given by the <i>dilution rate</i>
 +
(<span class=mi></span><i><span style='color:inherit'><span
 +
id=MathJax-Element-20-Frame><nobr><span role=math style='display:inline-block'
 +
id=MathJax-Span-183><span style='display:inline-block'><span style='clip:rect(1.794em, 1000em, 2.823em, -1000em)'><span
 +
id=MathJax-Span-184><span id=MathJax-Span-185>D</span></i></span></span></span></span></span></nobr></span>):</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=602
border=0 width=253 height=66 id="Picture 20"
+
height=63 id="Picture 28" src="https://static.igem.org/mediawiki/2018/9/9b/T--IIT_Kanpur--Model_18.png"></span></p>
src="Modelling444_files/image017.png"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>In the
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
chemostat fresh growth medium is added into the vessel at a <i>steady flow-rate</i>
+
(</span><span class=mi></span><i><span style='font-size:16.0pt;line-height:
+
107%;font-family:"MathJax_Math",serif'><nobr><span role=math style='display:
+
inline-block' id=MathJax-Span-180><span style='color:inherit'><span
+
id=MathJax-Element-19-Frame><span style='display:inline-block'><span
+
style='clip:rect(1.797em, 1000em, 2.823em, -1000em)'><span id=MathJax-Span-181><span
+
id=MathJax-Span-182>F<span style='display:inline-block;overflow:hidden'></span></i></span><span
+
style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></nobr></span>)
+
and culture liquid exits at the same rate and the growth medium is uniformly
+
dispersed. The rate of nutrient is exchange is given by the <i>dilution rate</i>
+
(</span><span class=mi></span><i><span style='font-size:16.0pt;line-height:
+
107%;font-family:"MathJax_Math",serif'><nobr><span role=math style='display:
+
inline-block' id=MathJax-Span-183><span style='color:inherit'><span
+
id=MathJax-Element-20-Frame><span style='display:inline-block'><span
+
style='clip:rect(1.794em, 1000em, 2.823em, -1000em)'><span id=MathJax-Span-184><span
+
id=MathJax-Span-185>D</span></span></span></i><span style='display:inline-block'></span><span
+
style='font-size:16.0pt;line-height:107%'></span></span></span></span></nobr></span>):</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Assuming every organism
border=0 width=602 height=63 id="Picture 28"
+
will have an equal probability of leaving the vessel within a given time. The <i>wash-out
src="Modelling444_files/image018.jpg"></span></p>
+
rate</i> (rate in which organism initially present in the vessel will be washed
 +
out) can be expressed as:</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Assuming every
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=602
organism will have an equal probability of leaving the vessel within a given
+
height=65 id="Picture 29" src="https://static.igem.org/mediawiki/2018/7/72/T--IIT_Kanpur--Model_19.jpg"></span></p>
time. The <i>wash-out rate</i> (rate in which organism initially present in the
+
vessel will be washed out) can be expressed as:</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>where <span class=mi></span><i><span
border=0 width=602 height=65 id="Picture 29"
+
style='color:inherit'><span id=MathJax-Element-23-Frame><nobr><span role=math
src="Modelling444_files/image019.jpg"></span></p>
+
style='display:inline-block' id=MathJax-Span-226><span style='display:inline-block'><span
 +
style='clip:rect(2.035em, 1000em, 2.834em, -1000em)'><span id=MathJax-Span-227><span
 +
id=MathJax-Span-228>x</span></i></span></span></span></span></span></nobr></span>
 +
is the concentration of organisms in the vessel</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>where </span><span
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
class=mi><nobr><span role=math style='display:inline-block'
+
id=MathJax-Span-226><i><span style='font-size:16.0pt;line-height:107%;
+
font-family:"MathJax_Math",serif'><span style='display:inline-block'><span
+
id=MathJax-Element-23-Frame><span style='clip:rect(2.035em, 1000em, 2.834em, -1000em)'><span
+
id=MathJax-Span-227><span id=MathJax-Span-228>x</span></span></span></i><span
+
style='display:inline-block'></span><span style='font-size:16.0pt;line-height:
+
107%'></span></span></span></span></nobr></span> is the concentration of
+
organisms in the vessel</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%;font-family:
+
<p class=MsoNoSpacing><b><span style='font-size:16.0pt'>1. Changes in
"Times New Roman",serif'>&nbsp;</span></p>
+
concentration of organism</span></b></p>
  
<p class=MsoNormal><b><span style='font-size:16.0pt;line-height:107%;
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>In a continuous culture, combining
font-family:"Times New Roman",serif'>1. Changes in concentration of organism</span></b></p>
+
growth (1) and washout rate (5) we have the net rate of increase is therefore:</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%;font-family:
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
"Times New Roman",serif'>In a continuous culture, combining growth (1) and
+
washout rate (5) we have the net rate of increase is therefore:</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=595
 +
height=49 id="Picture 39" src="https://static.igem.org/mediawiki/2018/0/0e/T--IIT_Kanpur--Model_20.jpg"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
border=0 width=595 height=49 id="Picture 39"
+
src="Modelling444_files/image020.jpg"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=601
 +
height=70 id="Picture 30" src="https://static.igem.org/mediawiki/2018/a/a8/T--IIT_Kanpur--Model_21.jpg"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><b><span style='font-size:16.0pt'>&nbsp;</span></b></p>
border=0 width=601 height=70 id="Picture 30"
+
src="Modelling444_files/image021.jpg"></span></p>
+
  
<p class=MsoNormal><b><span style='font-size:16.0pt;line-height:107%'>2.
+
<p class=MsoNoSpacing><b><span style='font-size:16.0pt'>2. Changes in substrate
Changes in substrate concentration</span></b></p>
+
concentration</span></b></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Assuming  substrate
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Assuming  substrate enters
enters the vessel at a concentration </span><span class=mi><nobr><span role=math
+
the vessel at a concentration <span class=mi></span><i><span style='color:inherit'><span
style='display:inline-block' id=MathJax-Span-347><i><span style='font-size:
+
id=MathJax-Element-33-Frame><nobr><span role=math style='display:inline-block'
16.0pt;line-height:107%;font-family:"MathJax_Math",serif'><span
+
id=MathJax-Span-347><span style='display:inline-block'><span style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span
style='display:inline-block'><span id=MathJax-Element-33-Frame><span
+
id=MathJax-Span-348><span id=MathJax-Span-349><span style='display:inline-block'><span
style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span id=MathJax-Span-348><span
+
style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span id=MathJax-Span-350>S</span></span><span
id=MathJax-Span-349><span style='display:inline-block'><span style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span
+
id=MathJax-Span-351><span id=MathJax-Span-352><span id=MathJax-Span-353>i</span><span
id=MathJax-Span-350>S</span></span><span id=MathJax-Span-351><span
+
id=MathJax-Span-354>n</span></i></span></span></span></span></span></span></span></span></span></nobr></span>,
id=MathJax-Span-352><span id=MathJax-Span-353>i</span><span
+
id=MathJax-Span-354>n</span></span></span></i></span></span><span
+
style='display:inline-block'><span style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></span></nobr></span>,
+
 
consumed by the bacterial cell in the vessel and then exits the vessel at
 
consumed by the bacterial cell in the vessel and then exits the vessel at
concentration </span><span class=mi><nobr><span role=math style='display:inline-block'
+
concentration <span class=mi></span><i><span style='color:inherit'><span
id=MathJax-Span-355><i><span style='font-size:16.0pt;line-height:107%;
+
id=MathJax-Element-34-Frame><nobr><span role=math style='display:inline-block'
font-family:"MathJax_Math",serif'><span style='display:inline-block'><span
+
id=MathJax-Span-355><span style='display:inline-block'><span style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span
id=MathJax-Element-34-Frame><span style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span
+
 
id=MathJax-Span-356><span id=MathJax-Span-357><span style='display:inline-block'><span
 
id=MathJax-Span-356><span id=MathJax-Span-357><span style='display:inline-block'><span
 
style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span id=MathJax-Span-358>S</span></span><span
 
style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span id=MathJax-Span-358>S</span></span><span
 
id=MathJax-Span-359><span id=MathJax-Span-360><span id=MathJax-Span-361>o</span><span
 
id=MathJax-Span-359><span id=MathJax-Span-360><span id=MathJax-Span-361>o</span><span
id=MathJax-Span-362>u</span><span id=MathJax-Span-363>t</span></span></span></i></span></span><span
+
id=MathJax-Span-362>u</span><span id=MathJax-Span-363>t</span></i></span></span></span></span></span></span></span></span></span></nobr></span>.
style='display:inline-block'><span style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></span></nobr></span>.
+
 
The net rate of change is therefore:</span></p>
 
The net rate of change is therefore:</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=414
border=0 width=414 height=87 id="Picture 35"
+
height=87 id="Picture 35" src="https://static.igem.org/mediawiki/2018/7/78/T--IIT_Kanpur--Model_22.jpg"></span></p>
src="Modelling444_files/image022.png"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=602
border=0 width=602 height=226 id="Picture 32"
+
height=226 id="Picture 32" src="https://static.igem.org/mediawiki/2018/4/41/T--IIT_Kanpur--Model_23.jpg"></span></p>
src="Modelling444_files/image023.jpg"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>When <span class=mi></span><i><span
 
+
style='color:inherit'><span id=MathJax-Element-45-Frame><nobr><span role=math
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>When </span><span
+
style='display:inline-block' id=MathJax-Span-545><span style='display:inline-block'><span
class=mi></span><i><span style='font-size:16.0pt;line-height:107%;font-family:
+
"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
+
id=MathJax-Span-545><span style='color:inherit'><span
+
id=MathJax-Element-45-Frame><span style='display:inline-block'><span
+
 
style='clip:rect(1.272em, 1000em, 2.951em, -1000em)'><span id=MathJax-Span-546><span
 
style='clip:rect(1.272em, 1000em, 2.951em, -1000em)'><span id=MathJax-Span-546><span
 
id=MathJax-Span-547><span style='display:inline-block'><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span
 
id=MathJax-Span-547><span style='display:inline-block'><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span
Line 635: Line 562:
 
id=MathJax-Span-550>x</span></span></span><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span
 
id=MathJax-Span-550>x</span></span></span><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span
 
id=MathJax-Span-551><span id=MathJax-Span-552>/d</span><span
 
id=MathJax-Span-551><span id=MathJax-Span-552>/d</span><span
id=MathJax-Span-553>t</span></span></span></i><span style='display:inline-block'></span><span
+
id=MathJax-Span-553>t</span></i></span></span></span></span></span></span></span></span></span></nobr></span>
style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></span></span></nobr></span>
+
and <span class=mi></span><i><span style='color:inherit'><span
and </span><span class=mi></span><i><span style='font-size:16.0pt;line-height:
+
id=MathJax-Element-46-Frame><nobr><span role=math style='display:inline-block'
107%;font-family:"MathJax_Math",serif'><nobr><span role=math style='display:
+
id=MathJax-Span-554><span style='display:inline-block'><span style='clip:rect(1.273em, 1000em, 2.951em, -1000em)'><span
inline-block' id=MathJax-Span-554><span style='color:inherit'><span
+
id=MathJax-Span-555><span id=MathJax-Span-556><span style='display:inline-block'><span
id=MathJax-Element-46-Frame><span style='display:inline-block'><span
+
style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span id=MathJax-Span-557><span
style='clip:rect(1.273em, 1000em, 2.951em, -1000em)'><span id=MathJax-Span-555><span
+
id=MathJax-Span-558>d</span><span id=MathJax-Span-559>s</span></span></span><span
id=MathJax-Span-556><span style='display:inline-block'><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span
+
style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span id=MathJax-Span-560><span
id=MathJax-Span-557><span id=MathJax-Span-558>d</span><span
+
id=MathJax-Span-561>/d</span><span id=MathJax-Span-562>t</span></i></span></span></span></span></span></span></span></span></span></nobr></span>
id=MathJax-Span-559>s</span></span></span><span style='clip:rect(3.311em, 1000em, 4.155em, -1000em)'><span
+
id=MathJax-Span-560><span id=MathJax-Span-561>/d</span><span
+
id=MathJax-Span-562>t</span></span></span></i><span style='display:inline-block'></span><span
+
style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></span></span></nobr></span>
+
 
is 0, the system is said to be in a ‘steady state’ because the concentration of
 
is 0, the system is said to be in a ‘steady state’ because the concentration of
 
organism and substrate within the continuous culture is kept constant. The
 
organism and substrate within the continuous culture is kept constant. The
values of steady state </span><span class=mi></span><i><span style='font-size:
+
values of steady state <span class=mi></span><i><span style='color:inherit'><span
16.0pt;line-height:107%;font-family:"MathJax_Math",serif'><nobr><span role=math
+
id=MathJax-Element-47-Frame><nobr><span role=math style='display:inline-block'
style='display:inline-block' id=MathJax-Span-563><span style='color:inherit'><span
+
id=MathJax-Span-563><span style='display:inline-block'><span style='clip:rect(2.035em, 1000em, 2.834em, -1000em)'><span
id=MathJax-Element-47-Frame><span style='display:inline-block'><span
+
id=MathJax-Span-564><span id=MathJax-Span-565>x</span></i></span></span></span></span></span></nobr></span>
style='clip:rect(2.035em, 1000em, 2.834em, -1000em)'><span id=MathJax-Span-564><span
+
and <span class=mi></span><i><span style='color:inherit'><span
id=MathJax-Span-565>x</span></span></span></i><span style='display:inline-block'></span><span
+
id=MathJax-Element-48-Frame><nobr><span role=math style='display:inline-block'
style='font-size:16.0pt;line-height:107%'></span></span></span></span></nobr></span>
+
id=MathJax-Span-566><span style='display:inline-block'><span style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span
and </span><span class=mi></span><i><span style='font-size:16.0pt;line-height:
+
id=MathJax-Span-567><span id=MathJax-Span-568>s</span></i></span></span></span></span></span></nobr></span>,
107%;font-family:"MathJax_Math",serif'><nobr><span role=math style='display:
+
inline-block' id=MathJax-Span-566><span style='color:inherit'><span
+
id=MathJax-Element-48-Frame><span style='display:inline-block'><span
+
style='clip:rect(2.035em, 1000em, 2.833em, -1000em)'><span id=MathJax-Span-567><span
+
id=MathJax-Span-568>s</span></span></span></i><span style='display:inline-block'></span><span
+
style='font-size:16.0pt;line-height:107%'></span></span></span></span></nobr></span>,
+
 
designated as <em><span style='font-family:"Calibri",sans-serif'></span><span
 
designated as <em><span style='font-family:"Calibri",sans-serif'></span><span
 
style='color:inherit'><span id=MathJax-Element-49-Frame><nobr><span role=math
 
style='color:inherit'><span id=MathJax-Element-49-Frame><nobr><span role=math
Line 672: Line 589:
 
id=MathJax-Span-574>x~ and s~</span></em> are expressed as:</span></p>
 
id=MathJax-Span-574>x~ and s~</span></em> are expressed as:</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=602
border=0 width=602 height=125 id="Picture 33"
+
height=125 id="Picture 33" src="https://static.igem.org/mediawiki/2018/6/66/T--IIT_Kanpur--Model_24.jpg"></span></p>
src="Modelling444_files/image024.jpg"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>So the two parameters
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
D and </span><span class=mi></span><i><span style='font-size:16.0pt;line-height:
+
 
107%;font-family:"MathJax_Math",serif'><nobr><span role=math style='display:
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>So the two parameters D
inline-block' id=MathJax-Span-686><span style='color:inherit'><span
+
and <span class=mi></span><i><span style='color:inherit'><span
id=MathJax-Element-54-Frame><span style='display:inline-block'><span
+
id=MathJax-Element-54-Frame><nobr><span role=math style='display:inline-block'
style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span id=MathJax-Span-687><span
+
id=MathJax-Span-686><span style='display:inline-block'><span style='clip:rect(1.484em, 1000em, 2.692em, -1000em)'><span
id=MathJax-Span-688><span style='display:inline-block'><span style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span
+
id=MathJax-Span-687><span id=MathJax-Span-688><span style='display:inline-block'><span
id=MathJax-Span-689>S</span></span><span id=MathJax-Span-690><span
+
style='clip:rect(3.097em, 1000em, 4.169em, -1000em)'><span id=MathJax-Span-689>S</span></span><span
id=MathJax-Span-691><span id=MathJax-Span-692>i</span><span
+
id=MathJax-Span-690><span id=MathJax-Span-691><span id=MathJax-Span-692>i</span><span
id=MathJax-Span-693>n</span></span></span></i></span></span><span
+
id=MathJax-Span-693>n</span></i></span></span></span></span></span></span></span></span></span></nobr></span>
style='display:inline-block'><span style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></span></nobr></span>
+
 
control the steady state within the chemostat. Since we have been also using
 
control the steady state within the chemostat. Since we have been also using
 
E.coli for SDS degradation we use values constants of (growth constant <span
 
E.coli for SDS degradation we use values constants of (growth constant <span
Line 695: Line 610:
 
id=MathJax-Span-695><span id=MathJax-Span-696><span style='display:inline-block'><span
 
id=MathJax-Span-695><span id=MathJax-Span-696><span style='display:inline-block'><span
 
style='clip:rect(3.36em, 1000em, 4.363em, -1000em)'><span id=MathJax-Span-697><span
 
style='clip:rect(3.36em, 1000em, 4.363em, -1000em)'><span id=MathJax-Span-697><span
id=MathJax-Span-698><span id=MathJax-Span-699>) </span><span class=mo><i><span
+
id=MathJax-Span-698><span id=MathJax-Span-699>) <span class=mo><i>&#956;</i></span></span></span><span
style='font-size:16.0pt;line-height:107%;font-family:"MathJax_Math",serif'>&#956;</span></span></i></span></span></span><span
+
class=mi><i></span></span><span id=MathJax-Span-700><span id=MathJax-Span-701><span
class=mi><i><span style='font-size:16.0pt;line-height:107%;font-family:"MathJax_Math",serif'></span><span
+
id=MathJax-Span-702>m</span><span id=MathJax-Span-703>a</span><span
id=MathJax-Span-700><span id=MathJax-Span-701><span id=MathJax-Span-702>m</span><span
+
id=MathJax-Span-704>x</span></i></span></span></span></span></span></span></span></span></span></nobr></span>,
id=MathJax-Span-703>a</span><span id=MathJax-Span-704>x</span></span></span></i></span></span><span
+
<span class=mi></span><i><span style='color:inherit'><span
style='display:inline-block'><span style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></span></nobr></span>,
+
id=MathJax-Element-56-Frame><nobr><span role=math style='display:inline-block'
</span><span class=mi></span><i><span style='font-size:16.0pt;line-height:107%;
+
id=MathJax-Span-705><span style='display:inline-block'><span style='clip:rect(1.506em, 1000em, 2.692em, -1000em)'><span
font-family:"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
+
id=MathJax-Span-706><span id=MathJax-Span-707><span style='display:inline-block'><span
id=MathJax-Span-705><span style='color:inherit'><span
+
style='clip:rect(3.119em, 1000em, 4.147em, -1000em)'><span id=MathJax-Span-708>K</span></span><span
id=MathJax-Element-56-Frame><span style='display:inline-block'><span
+
id=MathJax-Span-709>s</span></i><span style='display:inline-block'></span></span></span></span></span></span></span></span></nobr></span>
style='clip:rect(1.506em, 1000em, 2.692em, -1000em)'><span id=MathJax-Span-706><span
+
and <span class=mi></span><i><span style='color:inherit'><span
id=MathJax-Span-707><span style='display:inline-block'><span style='clip:rect(3.119em, 1000em, 4.147em, -1000em)'><span
+
id=MathJax-Element-57-Frame><nobr><span role=math style='display:inline-block'
id=MathJax-Span-708>K</span></span><span id=MathJax-Span-709>s</span></span><span
+
id=MathJax-Span-710><span style='display:inline-block'><span style='clip:rect(1.794em, 1000em, 2.822em, -1000em)'><span
style='display:inline-block'></i></span><span style='font-size:16.0pt;
+
id=MathJax-Span-711><span id=MathJax-Span-712>Y<span style='display:inline-block;
line-height:107%'></span></span></span></span></span></span></span></nobr></span>
+
overflow:hidden'></i></span></span></span></span></span></span></span></nobr></span>
and </span><span class=mi></span><i><span style='font-size:16.0pt;line-height:
+
107%;font-family:"MathJax_Math",serif'><nobr><span role=math style='display:
+
inline-block' id=MathJax-Span-710><span style='color:inherit'><span
+
id=MathJax-Element-57-Frame><span style='display:inline-block'><span
+
style='clip:rect(1.794em, 1000em, 2.822em, -1000em)'><span id=MathJax-Span-711><span
+
id=MathJax-Span-712>Y<span style='display:inline-block;overflow:hidden'></span></i></span><span
+
style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></nobr></span>
+
 
same as used by team iGEM Manchester 2017.</span></p>
 
same as used by team iGEM Manchester 2017.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
 +
 
 +
<p class=MsoNoSpacing><span style='font-size:16.0pt'>We use values of these
 +
constants as referenced here by iGEM Manchester 2017.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>We use
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
values of these constants as referenced here by iGEM Manchester 2017.</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=602
border=0 width=602 height=259 id="Picture 34"
+
height=259 id="Picture 34" src="https://static.igem.org/mediawiki/2018/8/87/T--IIT_Kanpur--Model_25.jpg"></span></p>
src="Modelling444_files/image025.jpg"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Finally
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Finally output is modelled
output is modelled through the equation:</span></p>
+
through the equation:</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=414
border=0 width=414 height=87 id="Picture 36"
+
height=87 id="Picture 36" src="https://static.igem.org/mediawiki/2018/3/33/T--IIT_Kanpur--Model_26.jpg"></span></p>
src="Modelling444_files/image022.png"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>So there two
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>So there two design
design parameters in our bioreactor design model required for consideration. </span><span
+
parameters in our bioreactor design model required for consideration.<span
class=mi></span><i><span style='font-size:16.0pt;line-height:107%;font-family:
+
class=mi></span><i><span style='color:inherit'><span
"MathJax_Math",serif'><nobr><span role=math style='display:inline-block'
+
id=MathJax-Element-71-Frame><nobr><span role=math style='display:inline-block'
id=MathJax-Span-1045><span style='color:inherit'><span
+
id=MathJax-Span-1045><span style='display:inline-block'><span style='clip:rect(1.705em, 1000em, 2.7em, -1000em)'><span
id=MathJax-Element-71-Frame><span style='display:inline-block'><span
+
id=MathJax-Span-1046><span id=MathJax-Span-1047> D (dilution rate) and Sin (initial substrate concentration)</span></i></span></span></span></span></span></nobr></span>
style='clip:rect(1.705em, 1000em, 2.7em, -1000em)'><span id=MathJax-Span-1046><span
+
<i></i> <span class=mi></span><i><span style='color:inherit'><span
id=MathJax-Span-1047>D</span></span></span></i><span style='display:inline-block'></span><span
+
id=MathJax-Element-72-Frame><nobr><span role=math style='display:inline-block'
style='font-size:16.0pt;line-height:107%'></span></span></span></span></nobr></span>
+
id=MathJax-Span-1048><span style='display:inline-block'><span style='clip:rect(1.32em, 1000em, 2.494em, -1000em)'><span
(<i>dilution rate</i>) and </span><span class=mi></span><i><span
+
style='font-size:16.0pt;line-height:107%;font-family:"MathJax_Math",serif'><nobr><span
+
role=math style='display:inline-block' id=MathJax-Span-1048><span
+
style='color:inherit'><span id=MathJax-Element-72-Frame><span style='display:
+
inline-block'><span style='clip:rect(1.32em, 1000em, 2.494em, -1000em)'><span
+
 
id=MathJax-Span-1049><span id=MathJax-Span-1050><span style='display:inline-block'><span
 
id=MathJax-Span-1049><span id=MathJax-Span-1050><span style='display:inline-block'><span
 
style='clip:rect(3.137em, 1000em, 4.176em, -1000em)'><span
 
style='clip:rect(3.137em, 1000em, 4.176em, -1000em)'><span
id=MathJax-Span-1051>S</span></span><span id=MathJax-Span-1052><span
+
id=MathJax-Span-1051></span></span><span id=MathJax-Span-1052><span
id=MathJax-Span-1053><span id=MathJax-Span-1054>i</span><span
+
id=MathJax-Span-1053><span id=MathJax-Span-1054></span><span
id=MathJax-Span-1055>n</span></span></span></i></span></span><span
+
id=MathJax-Span-1055></span></i></span></span></span></span></span></span></span></span></span></nobr></span>
style='display:inline-block'><span style='font-size:16.0pt;line-height:107%'></span></span></span></span></span></span></span></nobr></span>
+
<i></i></span></p>
(<i>initial substrate concentration</i>)</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:18.0pt;line-height:107%;font-family:
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>Cost Estimation</span></p>
"Times New Roman",serif'>Cost Estimation</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%;font-family:
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>In order to achieve
"Times New Roman",serif'>In order to achieve economically viable bioreactor we
+
economically viable bioreactor we need to use a cheap easily available source
need to use a cheap easily available source of growth medium like molasses.</span></p>
+
of growth medium like molasses.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>-Molasses
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>-Molasses cost $0.07/kg</span></p>
cost $0.07/kg</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>-The density
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>-The density of molasses
of molasses is roughly 1.4 kg/L</span></p>
+
is roughly 1.4 kg/L</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>-Therefore,
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>-Therefore, 1 L of
1 L of molasses will cost $0.07 x 1.4 = $0.098</span></p>
+
molasses will cost $0.07 x 1.4 = $0.098</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=438
border=0 width=438 height=66 id="Picture 37"
+
height=66 id="Picture 37" src="https://static.igem.org/mediawiki/2018/3/33/T--IIT_Kanpur--Model_26.jpg"></span></p>
src="Modelling444_files/image026.png"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=433
border=0 width=433 height=148 id="Picture 38"
+
height=148 id="Picture 38" src="https://static.igem.org/mediawiki/2018/6/6a/T--IIT_Kanpur--Model_27.jpg"></span></p>
src="Modelling444_files/image027.png"></span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>1-Dodecanol
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>1-Dodecanol manufactured
manufactured by conventional methods usually is contaminated by long carbon
+
by conventional methods usually is contaminated by long carbon chain compounds,
chain compounds, hence are associated with expensive purification costs. The
+
hence are associated with expensive purification costs. The low downstream
low downstream processing costs of our final product 1-dodecanol obtained from
+
processing costs of our final product 1-dodecanol obtained from bacterial
bacterial degradation of SDS may help us cut down our costs, hence this could
+
degradation of SDS may help us cut down our costs, hence this could lead to development
lead to development of economically viable product.</span></p>
+
of a economically viable product.</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>So based our
 
model we get the necessary cost for production of 1 kg of E.coli that would be
 
needed for SDS degradation.</span></p>
 
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Also market
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
price of detergent grade SDS is about Rs 160/kg = $2.18</span></p>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> And price
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>A rough
of of 1-dodecanol (98%) is about Rs 9070/kg =123.3</span></p>
+
estimate of price of operation can be given by based on the substrate consumption and enzyme production rate</span></p>
 +
<p class=MsoNoSpacing><span style='font-size:16.0pt'><img border=0 width=592
 +
height=46 id="Picture 38" src="https://static.igem.org/mediawiki/2018/3/3c/T--IIT_Kanpur--M22.png"></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
 
  
<h1><span style='color:windowtext'>Based on these rough estimate of prices we
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>___________________________________________________________________________________________________________________________</span></p>
can estimate our yearly cost of operation.</span></h1>
+
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><i><span style='font-size:16.0pt'>References:</span></i></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size:
 +
16.0pt;color:windowtext'>1.Towards the Identification of Type II Secretion
 +
Signals in a Nonacylated Variant of Pullulanase from Klebsiella oxytoca (2005),
 +
Olivera Franceti&#263; and Anthony P. Pugsley.</span></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size:
 +
16.0pt;color:windowtext'>2.http://www.bg.ic.ac.uk/research/g.stan/2010_Course_MiB_article.pdf,
 +
Accessed 04/08/2017.</span></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size:
 +
16.0pt;color:windowtext'>3.</span></span><span class=MsoSubtleEmphasis><span
 +
style='font-size:16.0pt;color:windowtext'>Commercial Laundry Water CharacterisationJ.
 +
K. Braga*, M. B. A. Varesche</span></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size:
 +
16.0pt;color:windowtext'>Department of Hydraulics and Sanitation, Engineering
 +
School of São Carlos, São Paulo University, </span></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size:
 +
16.0pt;color:windowtext'>São Carlos, Brazil</span></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size:
 +
16.0pt;color:windowtext'>4.Guy-Bart Stan. Modelling in Biology. Lecture notes,
 +
2017. </span></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span class=MsoSubtleEmphasis><span style='font-size:
 +
16.0pt;color:windowtext'>5.https://math.la.asu.edu/~halsmith/bacteriagrow.pdf</span></span></p>
  
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
<p class=MsoNoSpacing><span style='font-size:16.0pt'>&nbsp;</span></p>
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>&nbsp;</span></p>
+
 
+
<p class=MsoNormal><span style='font-size:20.0pt;line-height:107%;color:#C00000'>___________________________________________________________________________________________________________________________</span></p>
+
 
+
<p class=MsoNormal><i><span style='font-size:18.0pt;line-height:107%'>References:</span></i></p>
+
 
+
<p class=MsoNormal><span class=MsoSubtleEmphasis>1.Towards the Identification
+
of Type II Secretion Signals in a Nonacylated Variant of Pullulanase from Klebsiella
+
oxytoca (2005), Olivera Franceti&#263; and Anthony P. Pugsley.</span></p>
+
 
+
<p class=MsoNormal><span class=MsoSubtleEmphasis>2.http://www.bg.ic.ac.uk/research/g.stan/2010_Course_MiB_article.pdf,
+
Accessed 04/08/2017.</span></p>
+
 
+
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
+
normal'><span class=MsoSubtleEmphasis>3.</span><span class=MsoSubtleEmphasis>Commercial
+
Laundry Water CharacterisationJ. K. Braga*, M. B. A. Varesche</span></p>
+
 
+
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
+
normal'><span class=MsoSubtleEmphasis>Department of Hydraulics and Sanitation,
+
Engineering School of São Carlos, São Paulo University, </span></p>
+
 
+
<p class=MsoNormal style='margin-bottom:0cm;margin-bottom:.0001pt;line-height:
+
normal'><span class=MsoSubtleEmphasis>São Carlos, Brazil</span></p>
+
 
+
<p class=MsoNormal><span class=MsoSubtleEmphasis>4.Guy-Bart Stan. Modelling in
+
Biology. Lecture notes, 2017. </span></p>
+
 
+
<p class=MsoNormal><span class=MsoSubtleEmphasis>5.https://math.la.asu.edu/~halsmith/bacteriagrow.pdf</span></p>
+
  
 
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
Line 899: Line 758:
  
 
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%'>&nbsp;</span></p>
 
<p class=MsoNormal><span style='font-size:14.0pt;line-height:107%;color:black'>&nbsp;</span></p>
 
  
 
</div>
 
</div>
Line 907: Line 764:
  
 
</html>
 
</html>
 
 
  
  
 
{{Template:IIT_Kanpur/Footer}}
 
{{Template:IIT_Kanpur/Footer}}

Latest revision as of 05:40, 8 December 2018

 

Modelling

 

Overview

Mathematical modelling is fundamental to synthetic biology, a tool that allows for deeper understanding of biological systems, acting as a link between the conception and the physical realisation of a biological circuit. Being able stimulate and understand our system behaviour before actual implementation saves both time and resources.

Through our modelling we tried to gain insight into our system so that we could improve it and make it realistically achievable.

We tried to describe the whole system with a mathematical system of linear ODEs which could characterizes the expression and secretion of all enzymes, the associated substrate – enzyme kinetics.

In order to realize the long term goal of developing a detergent biodegradation device for household and commercial use we tried to implement continuous culture modelling on our bioreactor design in order to estimate yearly cost of detergent biodegradation.

 

­­­­­­­­­­­­­­­­­­­­­_________________________________________________________________________________________________________________________

 

Single Cell Modelling

https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44177337_161118344832834_5155785162818060288_n.png?_nc_cat=110&oh=9e7779a555a3f3b881a5adfaa566230f&oe=5C581588

 

Single Cell Modelling allows to model our gene regulatory network (GRN) and the extracellular secretion of our enzyme alkyl sulfatase (SdsA1).

This model helped us gain insight into our system in order to understand dependence of rate of secretion of alkyl sulfatase in media under varying promoter strengths and secretion efficiencies due to the different secretion extracellular secretion tags PelB and OmpT.

Our model is based on overexpression of alkyl sulfatase under constitutive promoters from Anderson promoter collection in iGEM registry. The concentration of our enzyme SdsA1 is then predicted using the rates of transcription, translation and degradation (of both mRNA and protein) that are known in literature.

 

Since under a constitutive gene expression is unregulated, it is always on and its strength could be modelled through the transcription rate constant k1.

 

 

Using the law of mass action

 

 

1.    Transcription rate k1 is estimated from literature.

 

2.    Translation rate k2 is estimated from the literature

 

3.    mRNA degradation (d1) and Protein degradation rate (d2) are known for Ecoli through literature.

 

Since SdsA1 (alkyl sulfatase) a extracellular enzyme, it was essential to understand effect of secretion efficiencies of our enzyme from Ecoli cells, in order to determine concentration of SdsA1 in the media, which would be needed to model our enzyme substrate kinetics in order to understand SDS(Sodium Dodecyl Sulfate ) degradation.

 

We tried to model our protein secretion using a empirical secretion law used by iGEM Stuttgart 2017 team.

  

https://static.igem.org/mediawiki/2017/3/31/Secretion.png

 

rsecretion : secretion rate

[enzyme] : enzyme concentration

s : secretion efficiency

t : time

 

Here the secretion efficiency is a value between zero and one.

 

Since reliable data on expression of SdsA1 and its extracellular expression in Ecoli was not available we concluded that our model could only provide a qualitative understanding various factors on these.

 

 

 

https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44185937_2064200740556003_6694159164534423552_n.png?_nc_cat=105&oh=040a1b04709ea79fa27d8959210921b6&oe=5C482425

Fig 1.Simbiology implementation of our Model

https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44351672_551274411976028_2657043464260157440_n.png?_nc_cat=102&oh=ebd37b04550aef2d5e8d2f15364d230b&oe=5C50AC06https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44203308_1781628528626872_7513042899114655744_n.png?_nc_cat=111&oh=9400d852e101215b021771e1a18d90f4&oe=5C3F00B1

Fig.2 Effect of secretion efficiency on enzyme production        Fig.3 Effect of promoter strength on enzyme production

­­­___________________________________________________________________________________________________________________________

Enzyme Kinetics

 

We use the simple Michaelis-Menten formula to describe our enzymes’ kinetics.

      

Here, Vmax represents the maximum velocity achieved by the system, at maximum (saturating) substrate concentrations. KM (the Michaelis constant; sometimes represented as KS instead) is the substrate concentration at which the reaction velocity is 50% of the Vmax. [S] is the concentration of the substrate S.

 

Our enzyme (E) being SDS, substrate S being SdsA1 and P being our final product 1-Dodecanol.

Here k1 is rate of forward and k-1 being rate of backword reactions and k2 being rate of product formation.

In terms of specific Michaelis-Menten reaction, these constants are quoted in the literature as:

We assumed an average SDS concentration of 5-10 mg/L in domestic wastewater discharges.

____________________________________________________________________________________________________________________________________________________________________________________

 

Continuous Culture Modelling

 

https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44236260_489616118186439_8807087846427983872_n.png?_nc_cat=105&oh=12547d5feeea7af7a9a5ca9f30244400&oe=5C52B499

Fig4. Our SDS biodegradation chemostat illustration.

 

In order to understand if our project could be implemented in a real world we decided to check its economic sustainability by trying to estimate the yearly cost of operation of our bioreactor.

 

To do so we implement a model based on previous model developed by iGEM 2017 Manchester team who were trying to estimate cost of chemostat operation for cleaning Phosphate in wastewater.

 

The growth of bacteria in its exponential phase can be represented in the following exponential growth equation:

where:
x
is the bacteria concentration (dry weight mass/unit volume) at time t
μ is the specific growth rate
td is the doubling time (time required for the concentration of organism to double)

Monod showed that there is a relationship between the specific growth rate and the concentration of a limiting growth substrate that can be represented in this equation:

    

where:
s
the concentration of a limiting growth substrate
μmax is the maximum growth rate (growth rate when organism is placed in excess nutrients without any limiting factors)

Ks is the saturation constant – the value of s when:                                                            

 

Bacterial  growth and utilization of substrate is depicted by the Monod by the equation:

where Y is known as the yield constant.

 

 

In the chemostat fresh growth medium is added into the vessel at a steady flow-rate (F) and culture liquid exits at the same rate and the growth medium is uniformly dispersed. The rate of nutrient is exchange is given by the dilution rate (D):

 

Assuming every organism will have an equal probability of leaving the vessel within a given time. The wash-out rate (rate in which organism initially present in the vessel will be washed out) can be expressed as:

where x is the concentration of organisms in the vessel

 

 

1. Changes in concentration of organism

In a continuous culture, combining growth (1) and washout rate (5) we have the net rate of increase is therefore:

 

 

 

2. Changes in substrate concentration

Assuming  substrate enters the vessel at a concentration Sin, consumed by the bacterial cell in the vessel and then exits the vessel at concentration Sout. The net rate of change is therefore:

 

 

When dx/dt and ds/dt is 0, the system is said to be in a ‘steady state’ because the concentration of organism and substrate within the continuous culture is kept constant. The values of steady state x and s, designated as x~ and s~ are expressed as:

 

 

So the two parameters D and Sin control the steady state within the chemostat. Since we have been also using E.coli for SDS degradation we use values constants of (growth constant ) μmax, Ks and Y same as used by team iGEM Manchester 2017.

 

We use values of these constants as referenced here by iGEM Manchester 2017.

 

 

 

Finally output is modelled through the equation:

So there two design parameters in our bioreactor design model required for consideration. D (dilution rate) and Sin (initial substrate concentration)

 

Cost Estimation

In order to achieve economically viable bioreactor we need to use a cheap easily available source of growth medium like molasses.

-Molasses cost $0.07/kg

-The density of molasses is roughly 1.4 kg/L

-Therefore, 1 L of molasses will cost $0.07 x 1.4 = $0.098

 

 

1-Dodecanol manufactured by conventional methods usually is contaminated by long carbon chain compounds, hence are associated with expensive purification costs. The low downstream processing costs of our final product 1-dodecanol obtained from bacterial degradation of SDS may help us cut down our costs, hence this could lead to development of a economically viable product.

 

 

A rough estimate of price of operation can be given by based on the substrate consumption and enzyme production rate

___________________________________________________________________________________________________________________________

References:

1.Towards the Identification of Type II Secretion Signals in a Nonacylated Variant of Pullulanase from Klebsiella oxytoca (2005), Olivera Francetić and Anthony P. Pugsley.

2.http://www.bg.ic.ac.uk/research/g.stan/2010_Course_MiB_article.pdf, Accessed 04/08/2017.

3.Commercial Laundry Water CharacterisationJ. K. Braga*, M. B. A. Varesche

Department of Hydraulics and Sanitation, Engineering School of São Carlos, São Paulo University,

São Carlos, Brazil

4.Guy-Bart Stan. Modelling in Biology. Lecture notes, 2017.

5.https://math.la.asu.edu/~halsmith/bacteriagrow.pdf