Difference between revisions of "Team:UCL/Description"

(Prototype team page)
 
(Undo revision 498701 by Jacopodc (talk))
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{UCL}}
 
<html>
 
  
 +
{{UCL/BootstrapCSS}}
 +
{{UCL/Style}}
  
 +
<html lang="en">
 +
<head>
 +
    <meta charset="UTF-8">
 +
    <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0">
 +
    <meta http-equiv="X-UA-Compatible" content="ie=edge">
 +
    <title>UCL SETA - Model</title>
 +
    <link rel="icon" href="https://static.igem.org/mediawiki/2018/7/73/T--UCL--Logo2.png">
 +
   
 +
</head>
  
<div class="column full_size">
+
<script type="text/javascript" src="https://2018.igem.org/Template:UCL/BootstrapJS?action=raw&ctype=text/javascript"></script>
<h1>Description</h1>
+
<script type="text/javascript" src="https://2018.igem.org/Template:UCL/JQuery?action=raw&ctype=text/javascript"></script>
 +
<script type="text/javascript" src="https://2018.igem.org/Template:UCL/WowJS?action=raw&ctype=text/javascript"></script>
  
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
 
  
</div>
+
<script>
 +
$(document).ready(function(){
 +
  $("a").on('click', function(event) {
 +
    if (this.hash !== "") {
 +
      event.preventDefault();
 +
      var hash = this.hash;
 +
      $('html, body').animate({
 +
        scrollTop: $(hash).offset().top - 100
 +
      }, 1500, function(){
 +
        window.location.hash = hash;
 +
      });
 +
    }
 +
  });
 +
});
 +
</script>
  
 +
    <script>
 +
        new WOW().init();
 +
    </script>
  
 +
<body>
 +
<div class="background_img_igem">
 +
  <div class="navbarzindex">
 +
  <div class="navbar-brand_igem"><a href="https://2018.igem.org/Team:UCL">
 +
        <img class="img-logo_igem" src="https://static.igem.org/mediawiki/2018/7/73/T--UCL--Logo2.png" ></a>
 +
    </div>
  
<div class="column two_thirds_size">
+
<div class="topnav_igem" id="myTopnav_igem">
<h3>What should this page contain?</h3>
+
<div class="floatright_igem">
<ul>
+
<a href="javascript:void(0);" style="font-size:21px;" class="icon_igem" onclick="myFunction()">&#9776;</a>
<li> A clear and concise description of your project.</li>
+
  <div class="dropdown_igem">
<li>A detailed explanation of why your team chose to work on this particular project.</li>
+
    <button class="dropbtn_igem"onclick="People()">People
<li>References and sources to document your research.</li>
+
<li>Use illustrations and other visual resources to explain your project.</li>
+
</ul>
+
</div>
+
  
<div class="column third_size" >
+
    </button>
<div class="highlight decoration_A_full">
+
    <div class="dropdown-content_igem"id="dropdownpeople_igem">
<h3>Inspiration</h3>
+
        <a href="https://2018.igem.org/Team:UCL/Team">Team</a>
<p>See how other teams have described and presented their projects: </p>
+
        <a href="https://2018.igem.org/Team:UCL/Attributions">Attributions</a>
 +
       
 +
    </div>
 +
  </div>
 +
  <div class="dropdown_igem">
 +
    <button class="dropbtn_igem"onclick="Project()">Project
  
<ul>
+
    </button>
<li><a href="https://2016.igem.org/Team:Imperial_College/Description">2016 Imperial College</a></li>
+
    <div class="dropdown-content_igem"id="dropdownproject_igem">
<li><a href="https://2016.igem.org/Team:Wageningen_UR/Description">2016 Wageningen UR</a></li>
+
        <a href="https://2018.igem.org/Team:UCL/Description">Description</a>
<li><a href="https://2014.igem.org/Team:UC_Davis/Project_Overview"> 2014 UC Davis</a></li>
+
        <a href="https://2018.igem.org/Team:UCL/Results">Results</a>
<li><a href="https://2014.igem.org/Team:SYSU-Software/Overview">2014 SYSU Software</a></li>
+
        <a href="https://2018.igem.org/Team:UCL/Demonstrate">Demonstrate</a>
</ul>
+
        <a href="https://2018.igem.org/Team:UCL/InterLab">InterLab</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Safety">Safety</a>
 +
    </div>
 +
  </div>
 +
  <div class="dropdown_igem">
 +
    <button class="dropbtn_igem"onclick="Parts()">Parts
 +
 
 +
    </button>
 +
    <div class="dropdown-content_igem"id="dropdownparts_igem">
 +
        <a href="https://2018.igem.org/Team:UCL/Design">Part Design</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Parts">Parts</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Improve">Improved Part</a>
 +
    </div>
 +
  </div>
 +
  <div class="dropdown_igem">
 +
    <button class="dropbtn_igem"onclick="Modelling()">Modelling
 +
 
 +
    </button>
 +
    <div class="dropdown-content_igem"id="dropdownmodelling_igem">
 +
        <a href="https://2018.igem.org/Team:UCL/Model">Modelling</a>
 +
       
 +
    </div>
 +
  </div>
 +
  <div class="dropdown_igem">
 +
    <button class="dropbtn_igem"onclick="Humanpractices()">Human Practices
 +
 
 +
    </button>
 +
    <div class="dropdown-content_igem"id"dropdownhumanpractices_igem">
 +
        <a href="https://2018.igem.org/Team:UCL/Human_Practices">Human Practices</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Public_Engagement">Public Engagement</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Collaborations">Collaborations</a>
 +
    </div>
 +
  </div>
 +
  <div class="dropdown_igem">
 +
    <button class="dropbtn_igem"onclick="Notebook()">Notebook
 +
 
 +
    </button>
 +
    <div class="dropdown-content_igem"id="dropdownnotebook_igem">
 +
        <a href="https://2018.igem.org/Team:UCL/Notebook">Notebook</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Achievements">Achievements</a>
 +
        <a href="https://2018.igem.org/Team:UCL/Experiments">Experiments</a>
 +
    </div>
 +
  </div>
 +
 
 +
 
 +
</div>
 
</div>
 
</div>
 
</div>
 
</div>
  
 +
<script>
 +
  $(window).on('scroll',function(){
 +
    if($(window).scrollTop()){
 +
      $('.navbarzindex').addClass('black');
 +
    }
 +
    else {
 +
      $('.navbarzindex').removeClass('black');
 +
    }
 +
  })
 +
</script>
 +
<script>
 +
function myFunction() {
 +
    var x = document.getElementById("myTopnav_igem");
 +
    if (x.className === "topnav_igem") {
 +
        x.className += " responsive";
 +
    } else {
 +
        x.className = "topnav_igem";
 +
    }
 +
}
 +
</script>
  
  
  
<div class="column two_thirds_size" >
+
<script>
<h3>Advice on writing your Project Description</h3>
+
(function(){
 +
    var dropDownClass = 'dropdown-content_igem';
 +
    var showClass = 'show_igem';
 +
    var dropDowns = document.getElementsByClassName('dropdown_igem');
  
<p>
+
    var open = function(e){
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be concise, accurate, and unambiguous in your achievements.  
+
        var openDropDown = e.target.nextElementSibling;
</p>
+
        var dropdowns = document.getElementsByClassName(dropDownClass);
  
</div>
+
        openDropDown.classList.toggle(showClass);
  
<div class="column third_size">
+
        var closeDropDown = function(event) {
<h3>References</h3>
+
            if (event.target === e.target) {
<p>iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.</p>
+
                return;
 +
            }
 +
            if (openDropDown.classList.contains(showClass)) {
 +
                openDropDown.classList.remove(showClass);
 +
            }
 +
            window.removeEventListener('click', closeDropDown);
 +
        };
 +
        window.addEventListener('click', closeDropDown);
 +
    }
  
</div>
+
    for(var i = 0; i < dropDowns.length; i++){
 +
        dropDowns[i].children[0].addEventListener('click', open);
 +
    }
 +
}());
 +
</script>
  
  
 +
<script type="text/javascript" src="https://2018.igem.org/Template:UCL/ScrollToFixed?action=raw&ctype=text/javascript"></script>
  
 +
<script>
 +
$(document).ready(function() {
 +
    $('#sidenav').scrollToFixed({ marginTop: 250 });
 +
});
 +
</script>
  
  
 +
<!-- CONTENT******************************************************************************************************************************************************* -->
 +
<div class="container">
  
</html>
+
    <div class="container">
 +
     
 +
        <div class="h1_igem_subpage1">Project Description</div>
 +
    </div>
 +
    <div class="container containter-fluid container_igem">
 +
        <div id="sidenav" class="sidenav">
 +
          <a href="#TBP">The Biomaterials Problem</a>
 +
          <a href="#TTS">The Theoretical Solution</a>
 +
          <a href="#TIM">The Intein Miracle</a>
 +
          <a href="#MAO">Modular and Orthogonal</a>
 +
          <a href="#ASSM">A Spider Silk Model</a>
 +
 
 +
        </div>
 +
 
 +
        <section id="TBP">
 +
            <div class="card card_igem wow fadeInUp" data-wow-duration="2s" data-wow-delay="0.1s">
 +
                <div class="card-title text-center">
 +
                    <h4>The Biomaterials Problem</h4>
 +
                </div>
 +
                <div class="card-body text-justify">
 +
                    <div class="container">
 +
                        <div class="row">
 +
                            <div class="mmmm col-sm-10 mmmm mrfont">
 +
                                <p class="card-text card-text_igem text-justify">
 +
                                  Biomaterials have the ability to replace animal leather, plastic and textiles whilst simultaneously leaving a smaller carbon footprint. Synthetic silk, collagen, elastin and keratin are biomaterials which are commonly referred to when discussing replacements to our current harmful chemical polymers. The biomaterials manufacturing industry is in need of a modular platform capable of polymerising and functionalizing these proteins. This would enable the manufacturers to create tunable materials with varying properties.
 +
 
 +
 
 +
                                </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </section>
 +
 
 +
        <section id="TTS">
 +
            <div class="card card_igem wow fadeInUp" data-wow-duration="2s" data-wow-delay="0.1s">
 +
                <div class="card-title text-center">
 +
                    <h4>The Theoretical Solution</h4>
 +
                </div>
 +
                <div class="card-body text-justify">
 +
                    <div class="container">
 +
                        <div class="row">
 +
                            <div class="col-md-10 mmmm mrfont">
 +
                              <p class="card-text card-text_igem text-justify">
 +
                                A tunable platform in biomaterials means proteins of different properties can be fused together in a reliable manner. Ideally, steric hindrance would be negligible when fusing proteins. Furthermore, you should be able to control the amount of polymerisation and how long polymers are. Polymer length is a key parameter to enabling tunable properties as this will impact on their behaviour.
 +
                              </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </section>
 +
 
 +
        <section id="TIM">
 +
            <div class="card card_igem wow fadeInUp" data-wow-duration="2s" data-wow-delay="0.1s">
 +
                <div class="card-title text-center">
 +
                    <h4>The Intein Miracle</h4>
 +
                </div>
 +
                <div class="card-body text-justify">
 +
                    <div class="container">
 +
                        <div class="row">
 +
                            <div class="col-md-10 mmmm mrfont">
 +
                              <p class="card-text card-text_igem text-justify">
 +
                              Since Anraku and Stevens discovered intein proteins in 1990, protein engineering has had a powerful control element added to their toolbox. Inteins enable proteins of choice to fuse together simultaneously leaving behind an insignificant scar. The size of this amino acid scar means steric hindrance is minimal and does not impede on natural protein folding. Split inteins are synthesised individually and when they come in close contact they will fuse N- and C- termini and excise out the exteins. This enables two biomaterial proteins to be fused together.
 +
                              </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </section>
 +
 
 +
 
 +
 
 +
 
 +
        <section id="MAO">
 +
            <div class="card card_igem wow fadeInUp" data-wow-duration="2s" data-wow-delay="0.1s">
 +
                <div class="card-title text-center">
 +
                    <h4>Modular and Orthogonal</h4>
 +
                </div>
 +
                <div class="card-body text-justify">
 +
                    <div class="container">
 +
                        <div class="row">
 +
                            <div class="col-md-10 mmmm mrfont">
 +
                              <p class="card-text card-text_igem text-justify">
 +
                                SETA is taking intein polymers one step further by creating a modular platform for polymerization and functionalization of proteins. Fixed restriction sites create a plug-and-play tool for inserting biomaterial proteins in between inteins. The modular platform consists of two orthogonal intein flanked monomers and an intein passenger for capping. The intein monomer tool enables endless polymerisation by fusing biomaterial proteins to each other whilst the intein passenger stops this process by fusing a functional protein with no flanking inteins.
 +
                              </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </section>
 +
 
 +
        <section id="ASSM">
 +
            <div class="card card_igem wow fadeInUp" data-wow-duration="2s" data-wow-delay="0.1s">
 +
                <div class="card-title text-center">
 +
                    <h4>A Spider Silk Model</h4>
 +
                </div>
 +
                <div class="card-body text-justify">
 +
                    <div class="container">
 +
                        <div class="row">
 +
                            <div class="col-md-10 mmmm mrfont">
 +
                              <p class="card-text card-text_igem text-justify">
 +
                                Spider silk gained fame thanks to its mechanical properties rendering it stronger than steel. The protein biopolymer is also biodegradable and biocompatible making it an ideal substitute to undegradable chemical polymers like plastics. Given the novelty value amongst the public, the abundance of literature and the presence of growing industry, we decided to model SETA on spider silk polymerisation and functionalization.
 +
                              </p>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </section>
 +
 
 +
 
 +
 
 +
    </div>
 +
</div>
 +
</div>
 +
<div class="footer">
 +
    <div class="container">
 +
        <div class="row">
 +
            <div class="col-lg-4">
 +
                <center>
 +
                    <div class="h2_footer_igem">Our Location</div>
 +
                    University College London<br />
 +
  Gower St, Bloomsbury<br />London <br />WC1E 6BT
 +
                    <span></span>
 +
 
 +
                </center>
 +
            </div>
 +
            <div class="col-lg-4">
 +
                <center>
 +
                    <div class="h2_footer_igem">Contact Us</div>
 +
                  ucl.igem@ucl.ac.uk
 +
                    <a class="footer_img_igem" href="https://www.ucl.ac.uk/">
 +
                        <img src="https://static.igem.org/mediawiki/2018/f/ff/T--UCL--UCLLogo.jpeg" height="100rem;" />
 +
                    </a>
 +
                </center>
 +
            </div>
 +
            <div class="col-lg-4">
 +
                <center>
 +
                    <div class="h2_footer_igem">Follow Us</div>
 +
                    <a href="https://www.facebook.com/UCLiGEM/"class="contacticons">
 +
                        <img src="https://static.igem.org/mediawiki/2018/c/c4/T--UCL--FBLogo.svg" style="padding-top:1em;" height="62rem;"/>
 +
                    </a>
 +
                    <a href="https://twitter.com/ucligem?lang=en"class="contacticons">
 +
                        <img src="https://static.igem.org/mediawiki/2018/e/ed/T--UCL--TwitterLogo.svg" style="padding-top:1em;" height="62rem;"/>
 +
                    </a>
 +
                    <a href="https://www.instagram.com/ucl.igem/"class="contacticons">
 +
                        <img src="https://static.igem.org/mediawiki/2018/3/31/T--UCL--InstaLogo.png" style="padding-top:1em;" height="62rem;"/>
 +
 
 +
                    </a>
 +
                </center>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</div>
 +
</body>

Latest revision as of 13:30, 8 December 2018

UCL SETA - Model

Project Description

The Biomaterials Problem

Biomaterials have the ability to replace animal leather, plastic and textiles whilst simultaneously leaving a smaller carbon footprint. Synthetic silk, collagen, elastin and keratin are biomaterials which are commonly referred to when discussing replacements to our current harmful chemical polymers. The biomaterials manufacturing industry is in need of a modular platform capable of polymerising and functionalizing these proteins. This would enable the manufacturers to create tunable materials with varying properties.

The Theoretical Solution

A tunable platform in biomaterials means proteins of different properties can be fused together in a reliable manner. Ideally, steric hindrance would be negligible when fusing proteins. Furthermore, you should be able to control the amount of polymerisation and how long polymers are. Polymer length is a key parameter to enabling tunable properties as this will impact on their behaviour.

The Intein Miracle

Since Anraku and Stevens discovered intein proteins in 1990, protein engineering has had a powerful control element added to their toolbox. Inteins enable proteins of choice to fuse together simultaneously leaving behind an insignificant scar. The size of this amino acid scar means steric hindrance is minimal and does not impede on natural protein folding. Split inteins are synthesised individually and when they come in close contact they will fuse N- and C- termini and excise out the exteins. This enables two biomaterial proteins to be fused together.

Modular and Orthogonal

SETA is taking intein polymers one step further by creating a modular platform for polymerization and functionalization of proteins. Fixed restriction sites create a plug-and-play tool for inserting biomaterial proteins in between inteins. The modular platform consists of two orthogonal intein flanked monomers and an intein passenger for capping. The intein monomer tool enables endless polymerisation by fusing biomaterial proteins to each other whilst the intein passenger stops this process by fusing a functional protein with no flanking inteins.

A Spider Silk Model

Spider silk gained fame thanks to its mechanical properties rendering it stronger than steel. The protein biopolymer is also biodegradable and biocompatible making it an ideal substitute to undegradable chemical polymers like plastics. Given the novelty value amongst the public, the abundance of literature and the presence of growing industry, we decided to model SETA on spider silk polymerisation and functionalization.