|
|
(3 intermediate revisions by the same user not shown) |
Line 123: |
Line 123: |
| </p> | | </p> |
| <h2>crRNA</h2> | | <h2>crRNA</h2> |
− | <p style="font-size: 20px;line-height: 25px">The CRISPR guide RNA (crRNA) is a type of RNA that enables CRISPR proteins to locate their targets. For an enhanced efficacy and on-target rate at knocking out fadA by our cjCas9, the design of crRNA is very important. Unlike most of Cas9 orthologues, cjCas9 recognizes the PAM nucleotides on both the target and non-target DNA strands. Our crRNA is designed to recognized the PAM strand.</p> | + | <p style="font-size: 20px;line-height: 25px">The CRISPR guide RNA (crRNA) is a type of RNA that enables CRISPR proteins to locate their targets. For an enhanced efficacy and on-target rate at knocking out fadA by our cjCas9, the design of crRNA is very important.</p> |
| + | <p style="font-size: 20px;line-height: 25px"> Unlike most of Cas9 orthologues, cjCas9 recognizes the PAM nucleotides on both the target and non-target DNA strands. Our crRNA is designed to recognized the PAM strand.</p> |
| <p style="font-size: 20px;line-height: 25px">We copy the rest of the sgRNA[Fig.3] sequence according to Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems.</p> | | <p style="font-size: 20px;line-height: 25px">We copy the rest of the sgRNA[Fig.3] sequence according to Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems.</p> |
− | <p style="text-align:center"><img src="https://static.igem.org/mediawiki/2018/9/96/T--SIAT-SCIE--Chassis_Figure3.png" width="600px" height="500px"> </p> | + | <p style="text-align:center"><img src="https://static.igem.org/mediawiki/2018/a/a4/T--SIAT-SCIE--Fig.3.png" width="600px" height="400px"> </p> |
| + | <p style="font-size: 18px;line-height: 20px;padding-left:100px; padding-right:100px;"><b>Figure 3. Target DNA and sgRNA. </b><br>The gray DNA strand on top is a single strand of the target DNA(FadA). The red chain, including the gray part at tetraloop, shows our sgRNA’s sequence and structure.</p> |
| </details> | | </details> |
| <details> | | <details> |
Line 133: |
Line 135: |
| <p style="font-size: 20px;line-height: 25px">To detect FadA’s frameshift, we fused a part of FadA with a mRFP protein using a GILQSTVPRARNP linker (7), creating a FadA-linker-mRFP segment. If cjCas9 successfully cleaved mRFP and resulted in a frameshift, mRFP would cease to functioning, thereby weakening the fluorescence. Subsequently, sequencing was carried out to test if cjCas9 did cause a mutation that does not affect the reading frame.</p> | | <p style="font-size: 20px;line-height: 25px">To detect FadA’s frameshift, we fused a part of FadA with a mRFP protein using a GILQSTVPRARNP linker (7), creating a FadA-linker-mRFP segment. If cjCas9 successfully cleaved mRFP and resulted in a frameshift, mRFP would cease to functioning, thereby weakening the fluorescence. Subsequently, sequencing was carried out to test if cjCas9 did cause a mutation that does not affect the reading frame.</p> |
| <p style="text-align: center"><img src="https://static.igem.org/mediawiki/2018/c/cd/T--SIAT-SCIE--Fig.4.png" width="700px" height = "450px"></p> | | <p style="text-align: center"><img src="https://static.igem.org/mediawiki/2018/c/cd/T--SIAT-SCIE--Fig.4.png" width="700px" height = "450px"></p> |
− | <p style="font-size: 20px;line-height: 20px;font-weight:bold"><b>Figure 4. DNA repair through Nonhomologous end joining (NHEJ)</b><br>Having cleaved by Cas9 protein(not shown), a double strand break (DSB) will be created. It may leads to NHEJ. NHEJ will probably result in deletion(not shown) or addition of nucleotide pairs, disrupting the gene’s reading frame, causing serious mutations. If the deletion or addition nucleotides happens to be the multiple of three, it may also cause a serious mutation though it won't disrupt the reading frame of the gene.</p> | + | <p style="font-size: 18px;line-height: 20px"><b>Figure 4. DNA repair through Nonhomologous end joining (NHEJ)</b><br>Having cleaved by Cas9 protein(not shown), a double strand break (DSB) will be created. It may leads to NHEJ. NHEJ will probably result in deletion(not shown) or addition of nucleotide pairs, disrupting the gene’s reading frame, causing serious mutations. If the deletion or addition nucleotides happens to be the multiple of three, it may also cause a serious mutation though it won't disrupt the reading frame of the gene.</p> |
| </details> | | </details> |
| <details> | | <details> |
Line 144: |
Line 146: |
| </article> | | </article> |
| </section> | | </section> |
− | <p style="font-size: 10px">1. Schwechheimer, C., & Kuehn, M. J. (2015). Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology, 13(10), 605–619. doi:10.1038/nrmicro3525.</p> | + | <div class="chassis"> |
| + | <h1>Reference</h1> |
| + | <p style="font-size: 15px">1. Schwechheimer, C., & Kuehn, M. J. (2015). Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology, 13(10), 605–619. doi:10.1038/nrmicro3525.</p> |
| <br/> | | <br/> |
− | <p style="font-size: 10px">2. Kulp, A., & Kuehn, M. J. (2010). Biological Functions and Biogenesis of Secreted Bacterial Outer Membrane Vesicles. Annual Review of Microbiology, 64(1), 163–184. doi:10.1146/annurev.micro.091208.073413.</p> | + | <p style="font-size: 15px">2. Kulp, A., & Kuehn, M. J. (2010). Biological Functions and Biogenesis of Secreted Bacterial Outer Membrane Vesicles. Annual Review of Microbiology, 64(1), 163–184. doi:10.1146/annurev.micro.091208.073413.</p> |
| <br/> | | <br/> |
− | <p style="font-size: 10px">3. Engineering of bacterial outer membrane vesicles: Potential applications for the development of vaccines.</p> | + | <p style="font-size: 15px">3. Engineering of bacterial outer membrane vesicles: Potential applications for the development of vaccines.</p> |
− | <br/>
| + | |
− | <p style="font-size: 10px">4. Kim, E., Koo, T., Park, S. W., Kim, D., Kim, K., Cho, H.-Y., … Kim, J.-S. (2017). In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications, 8, 14500. doi:10.1038/ncomms14500.</p>
| + | |
− | <p style="font-size: 10px">5. Yamada, M., Watanabe, Y., Gootenberg, J. S., Hirano, H., Ran, F. A., Nakane, T., … Nureki, O. (2017). Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. Molecular Cell, 65(6), 1109–1121.e3. doi:10.1016/j.molcel.2017.02.007.</p>
| + | |
− | <p style="font-size: 10px">6. Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 85(1), 227–264. doi:10.1146/annurev-biochem-060815-014607.</p>
| + | |
− | <p style="font-size: 10px">7. Yasuda, R., Harvey, C. D., Zhong, H., Sobczyk, A., van Aelst, L., & Svoboda, K. (2006). Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nature Neuroscience, 9(2), 283–291. doi:10.1038/nn1635.</p>
| + | |
− | <br/>
| + | |
| <br/> | | <br/> |
| + | <p style="font-size: 15px">4. Kim, E., Koo, T., Park, S. W., Kim, D., Kim, K., Cho, H.-Y., … Kim, J.-S. (2017). In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications, 8, 14500. doi:10.1038/ncomms14500.</p> |
| + | <br> |
| + | <p style="font-size: 15px">5. Yamada, M., Watanabe, Y., Gootenberg, J. S., Hirano, H., Ran, F. A., Nakane, T., … Nureki, O. (2017). Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. Molecular Cell, 65(6), 1109–1121.e3. doi:10.1016/j.molcel.2017.02.007.</p> |
| + | <br> |
| + | <p style="font-size: 15px">6. Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 85(1), 227–264. doi:10.1146/annurev-biochem-060815-014607.</p> |
| + | <br> |
| + | <p style="font-size: 15px">7. Yasuda, R., Harvey, C. D., Zhong, H., Sobczyk, A., van Aelst, L., & Svoboda, K. (2006). Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nature Neuroscience, 9(2), 283–291. doi:10.1038/nn1635.</p> |
| + | <br/> |
| + | </div> |
| + | <br/> |
| + | <p style="text-align:center"><img style="width:900px;height:180px"src="https://static.igem.org/mediawiki/2018/d/d0/T--SIAT-SCIE--footer.png" /></p> |
| </body> | | </body> |
| </html> | | </html> |
Importing Proteins into Periplasm Through TAT Pathway
To allow proteins to be encapsulated in OMVs, they need to be imported into bacteria’s periplasm first. Compared to other common transporting pathways that transport proteins before folding (e.g. Sec and SRP-dependent pathways), twin arginine transport (TAT) pathway is an available option for transportation of fully folded proteins(3). This is crucial since some proteins, including GFP, cannot fold properly when transported into periplasm(3).
Thus, they have to complete their folding in cytoplasm before they can be transported to periplasm. Consequently, TAT pathway is the only plausible option[Fig. 2]. Regarding the Cas9 proteins, since there has been no literature discussing the possibility of their possible
Figure 2 of folding in periplasm, we chose TAT pathway for Cas9 proteins as well out of prudence.
Figure 2. Exporting GFPs to periplasm through Sec and Tat pathway.
Sec pathway(on the left) export proteins before they fold. Some proteins, such as GFP, cannot fold into correct shape in periplasm, thus cannot function if Sec pathway is used. In contrast, Tat pathway(on the right) export proteins after they fold properly in cytoplasm. By doing so, functional GFP can be transported to periplasm and be packaged into OMVs (An OMV is about to form at the outer membrane’s bending site). TorA(yellow box on the right) helps the export of proteins through Tat pathway.
Reference
1. Schwechheimer, C., & Kuehn, M. J. (2015). Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology, 13(10), 605–619. doi:10.1038/nrmicro3525.
2. Kulp, A., & Kuehn, M. J. (2010). Biological Functions and Biogenesis of Secreted Bacterial Outer Membrane Vesicles. Annual Review of Microbiology, 64(1), 163–184. doi:10.1146/annurev.micro.091208.073413.
3. Engineering of bacterial outer membrane vesicles: Potential applications for the development of vaccines.
4. Kim, E., Koo, T., Park, S. W., Kim, D., Kim, K., Cho, H.-Y., … Kim, J.-S. (2017). In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications, 8, 14500. doi:10.1038/ncomms14500.
5. Yamada, M., Watanabe, Y., Gootenberg, J. S., Hirano, H., Ran, F. A., Nakane, T., … Nureki, O. (2017). Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. Molecular Cell, 65(6), 1109–1121.e3. doi:10.1016/j.molcel.2017.02.007.
6. Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 85(1), 227–264. doi:10.1146/annurev-biochem-060815-014607.
7. Yasuda, R., Harvey, C. D., Zhong, H., Sobczyk, A., van Aelst, L., & Svoboda, K. (2006). Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nature Neuroscience, 9(2), 283–291. doi:10.1038/nn1635.