Difference between revisions of "Team:Cornell"

Line 23: Line 23:
 
         #HQ_page p {
 
         #HQ_page p {
 
             font-family: 'Opens Sans', sans-serif;
 
             font-family: 'Opens Sans', sans-serif;
            font-size: 14px;
 
            text-align: center;
 
 
         }
 
         }
  

Revision as of 21:46, 24 September 2018

Team:Cornell - 2018.igem.org

Introducing novelty through a frequency-based biological band-pass filter.


We are building a biological band-pass filter. While biological band pass filters have been developed before, none respond to frequency-based inputs but instead respond to amplitude based inputs. By controlling the rates of degradation of the components of our system, we are putting together a frequency-response low-pass and high-pass filter to create a novel band-pass filter.

Our filter would allow bacteria to respond only to certain frequency-based inputs, and give it even more digital logic-like character, long a goal of synthetic biology. Moving forward, our project could be an important tool for scientists as synthetic biology branches into increasingly diverse fields.
Ideation.

We are building a biological band-pass filter. While biological band pass filters have been developed before, none respond to frequency-based inputs but instead respond to amplitude based inputs. By controlling the rates of degradation of the components of our system, we are putting together a frequency-response low-pass and high-pass filter to create a novel band-pass filter.

Ideation.

We are building a biological band-pass filter. While biological band pass filters have been developed before, none respond to frequency-based inputs but instead respond to amplitude based inputs. By controlling the rates of degradation of the components of our system, we are putting together a frequency-response low-pass and high-pass filter to create a novel band-pass filter.

Ideation.

We are building a biological band-pass filter. While biological band pass filters have been developed before, none respond to frequency-based inputs but instead respond to amplitude based inputs. By controlling the rates of degradation of the components of our system, we are putting together a frequency-response low-pass and high-pass filter to create a novel band-pass filter.

Ideation.

We are building a biological band-pass filter. While biological band pass filters have been developed before, none respond to frequency-based inputs but instead respond to amplitude based inputs. By controlling the rates of degradation of the components of our system, we are putting together a frequency-response low-pass and high-pass filter to create a novel band-pass filter.