Difference between revisions of "Team:EPFL"

Line 4: Line 4:
 
<body>
 
<body>
  
    <main>
+
  <main>
        <section class="spotlight bg-primary bg-cover bg-size--cover" data-spotlight="fullscreen" style="background-color #f03;">
+
 
            <span class="mask bg-primary alpha-4"></span>
+
 
            <div class="spotlight-holder py-lg pt-lg-xl">
+
 
                <div class="container d-flex align-items-center">
+
    <!-- Spotlight -->
                    <div class="col">
+
    <section class="slice slice-xl bg-dark">
                        <div class="row cols-xs-space align-items-end text-center text-md-left justify-content-center">
+
      <div class="container">
                            <div class="col-lg-7">
+
        <div class="row row-grid align-items-center">
                                <div class="text-center">
+
          <div class="col-lg-5">
                                    <img src="https://static.igem.org/mediawiki/2018/b/b0/T--EPFL--LOGO_INVERT.png" style="width: 200px;">
+
            <div class="pt-lg-lg pb-lg-sm text-center text-lg-left">
                                    <h2 class="text-white my-4">
+
              <h2 class="h1 text-white mb-3">CAPOEIRA</h2>
                      <span class="display-4 font-weight-bold">CAPOEIRA</span>
+
              <p class="lead text-white lh-180">Cancer Personalized Encapsulin Immunotherapy and Relapse Assay</p>
                    </h2>
+
 
                                    <p class="lead text-white">Cancer Personalized Encapsulin Immunotherapy and Relapse Assay</p>
+
              <a href="https://2018.igem.org/Team:EPFL/Description" class="btn btn-white btn-circle btn-translate--hover btn-icon mr-sm-4 scroll-me">
                                    <div class="mt-5">
+
                                      <span class="btn-inner--text">Learn more about our project</span>
                                        <a href="https://2018.igem.org/Team:EPFL/Description" class="btn btn-white btn-circle btn-translate--hover btn-icon mr-sm-4 scroll-me">
+
                                      <span class="btn-inner--icon"><i class="fas fa-angle-right"></i></span>
                                            <span class="btn-inner--text">Learn more about our project</span>
+
                                  </a>
                                            <span class="btn-inner--icon"><i class="fas fa-angle-right"></i></span>
+
                                        </a>
+
                                    </div>
+
                                </div>
+
                            </div>
+
                        </div>
+
                    </div>
+
                </div>
+
 
             </div>
 
             </div>
             <a href="#abstract" class="tongue tongue-bottom scroll-me"><i class="fas fa-angle-down"></i></a>
+
          </div>
        </section>
+
          <div class="col-lg-6 ml-lg-auto text-center">
        <section id="abstract" class="slice">
+
             <img src="https://static.igem.org/mediawiki/2018/b/b0/T--EPFL--LOGO_INVERT.png" style="width: 200px;">
            <div class="container">
+
          </div>
                <div class="mb-5 text-center">
+
        </div>
                    <h3 class="heading h3">What is CAPOEIRA ?</h3>
+
      </div>
                    <div class="text-center mt-4">
+
      <div class="shape-container" data-shape-style="curve" data-shape-position="bottom">
                        <p class="lead lh-180">While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance. First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger T-cells’ attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to retaliate!</p>
+
        <svg class="shape-fill-primary" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1000 100" preserveAspectRatio="none">
                     </div>
+
                <path d="M 0 0 c 0 0 200 50 500 50 s 500 -50 500 -50 v 101 h -1000 v -100 z"></path>
 +
            </svg>
 +
      </div>
 +
    </section>
 +
 
 +
    <section class="slice slice-xl bg-primary">
 +
      <div class="container">
 +
        <div class="row row-grid align-items-center">
 +
          <div class="col-lg-11">
 +
            <div class="pr-md-4">
 +
              <h3 class="heading h3 text-white">What is CAPOEIRA ?</h3>
 +
              <p class="lead text-white my-4">While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project
 +
                “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance.
 +
                First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments
 +
                presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger T-cells’ attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential
 +
                relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to retaliate!
 +
 
 +
              </p>
 +
              <a href="#" class="btn btn-white btn-circle mt-4">Find out more</a>
 +
            </div>
 +
          </div>
 +
 
 +
        </div>
 +
      </div>
 +
    </section>
 +
 
 +
 
 +
 
 +
    <section id="abstract" class="slice">
 +
      <div class="container">
 +
        <div class="mb-5 text-center">
 +
          <h3 class="heading h3">Project Timeline</h3>
 +
        </div>
 +
        <div class="row justify-content-center">
 +
          <div class="col-lg-10">
 +
            <div class="timeline" data-timeline-axis-style="dashed" data-timeline-axis-color="light" data-timeline-content="axis">
 +
              <div class="timeline-block">
 +
                <span class="timeline-axis-step box-shadow-1 text-primary"><i class="fas fa-search fa-2x"></i></span>
 +
                <div class="timeline-content">
 +
                  <div class="">
 +
                     <h3 class="h5">Detection</h3>
 +
                    <p>First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. </p>
 +
                  </div>
 
                 </div>
 
                 </div>
                <div class="row justify-content-center">
+
              </div>
                    <div class="col-lg-10">
+
              <div class="timeline-block mt-5">
                        <div class="timeline" data-timeline-axis-style="dashed" data-timeline-axis-color="light" data-timeline-content="axis">
+
                <span class="timeline-axis-step box-shadow-1 text-primary"><i class="fas fa-syringe  fa-2x"></i></span>
                            <div class="timeline-block">
+
                <div class="timeline-content">
                                <span class="timeline-axis-step box-shadow-1 text-primary"><i class="fas fa-search fa-2x"></i></span>
+
                  <div class="">
                                <div class="timeline-content">
+
                    <h3 class="h5">Vaccine</h3>
                                    <div class="">
+
                    <p> Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes.</p>
                                        <h3 class="h5">Detection</h3>
+
                  </div>
                                        <p>Detection of cancer patient specific tumor mutations and neoantigens</p>
+
                                    </div>
+
                                </div>
+
                            </div>
+
                            <div class="timeline-block mt-5">
+
                                <span class="timeline-axis-step box-shadow-1 text-primary"><i class="fas fa-syringe  fa-2x"></i></span>
+
                                <div class="timeline-content">
+
                                    <div class="">
+
                                        <h3 class="h5">Vaccine</h3>
+
                                        <p>Expression of the neoantigens and the adjuvant using encapsulin</p>
+
                                    </div>
+
                                </div>
+
                            </div>
+
                            <div class="timeline-block mt-5">
+
                                <span class="timeline-axis-step box-shadow-1 text-primary"><i class="fas fa-flask fa-2x"></i></span>
+
                                <div class="timeline-content">
+
                                    <div class="">
+
                                        <h3 class="h5">Immune response</h3>
+
                                        <p>Maturation of dendritic cells and T-cells</p>
+
                                    </div>
+
                                </div>
+
                            </div>
+
                            <div class="timeline-block mt-5">
+
                                <span class="timeline-axis-step box-shadow-1 text-primary"><i class="fas fa-notes-medical fa-2x"></i></span>
+
                                <div class="timeline-content">
+
                                    <div class="">
+
                                        <h3 class="h5">Follow up</h3>
+
                                        <p>Detection of cancer relapse using liquid biopsies of ctDNA and cancer miRNA</p>
+
                                    </div>
+
                                </div>
+
                            </div>
+
                        </div>
+
                    </div>
+
 
                 </div>
 
                 </div>
 +
              </div>
 +
              <div class="timeline-block mt-5">
 +
                <span class="timeline-axis-step box-shadow-1 text-primary"><i class="fas fa-flask fa-2x"></i></span>
 +
                <div class="timeline-content">
 +
                  <div class="">
 +
                    <h3 class="h5">Immune response</h3>
 +
                    <p>This encapsulin vaccine activates dendritic cells which trigger T-cells’ attack on the neoantigen-bearing cancer cells.</p>
 +
                  </div>
 +
                </div>
 +
              </div>
 +
              <div class="timeline-block mt-5">
 +
                <span class="timeline-axis-step box-shadow-1 text-primary"><i class="fas fa-notes-medical fa-2x"></i></span>
 +
                <div class="timeline-content">
 +
                  <div class="">
 +
                    <h3 class="h5">Follow up</h3>
 +
                    <p>Nevertheless, we don’t underestimate a defeated villain! To detect potential relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating
 +
                      tumor miRNA and DNA.</p>
 +
                  </div>
 +
                </div>
 +
              </div>
 
             </div>
 
             </div>
         </section>
+
          </div>
 +
         </div>
 +
 
 +
 
 +
        <div class="text-center mt-4">
 +
          <p class="lead lh-180">Ultimately, CAPOEIRA trains the immune system to retaliate! </p>
 +
        </div>
 +
 
 +
      </div>
 +
    </section>
  
    </main>
+
  </main>
 
</body>
 
</body>
  
 
</html>
 
</html>
 
{{EPFL/Footer}}
 
{{EPFL/Footer}}

Revision as of 21:26, 11 October 2018

iGEM EPFL 2018

CAPOEIRA

Cancer Personalized Encapsulin Immunotherapy and Relapse Assay

Learn more about our project

What is CAPOEIRA ?

While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance. First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger T-cells’ attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to retaliate!

Find out more

Project Timeline

Detection

First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells.

Vaccine

Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes.

Immune response

This encapsulin vaccine activates dendritic cells which trigger T-cells’ attack on the neoantigen-bearing cancer cells.

Follow up

Nevertheless, we don’t underestimate a defeated villain! To detect potential relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA.

Ultimately, CAPOEIRA trains the immune system to retaliate!