Line 381: | Line 381: | ||
<br /> | <br /> | ||
− | <div align="center"><img src=" | + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/2/24/T--OUC-China--min1.png" width="700" > |
</div> | </div> | ||
<br /> | <br /> | ||
<div align="center"><p >Fig.1 The dynamics of GFP by model prediction</p></div> | <div align="center"><p >Fig.1 The dynamics of GFP by model prediction</p></div> | ||
We compare the experimental data to the simulation: | We compare the experimental data to the simulation: | ||
− | <div align="center"><img src=" | + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/8/89/T--OUC-China--min2.png" width="700" > |
</div> | </div> | ||
<br /> | <br /> | ||
Line 394: | Line 394: | ||
<br />Combining the biology and math, we now discuss why the dynamics of GFP is like the curve in the Fig.1. In order to explain in detail, we plot the dynamics of all species in the miniToe system in Fig.3. | <br />Combining the biology and math, we now discuss why the dynamics of GFP is like the curve in the Fig.1. In order to explain in detail, we plot the dynamics of all species in the miniToe system in Fig.3. | ||
− | <div align="center"><img src=" | + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/2/2e/T--OUC-China--res6.png" width="700" > |
</div> | </div> | ||
<br /> | <br /> | ||
Line 405: | Line 405: | ||
<br />After building the ODE model, we try to do something more deeply to our miniToe system by analyze the sensitivity of parameters. Fig.4 shows the numerical integration of sensitivities of parameters in 30 hours. | <br />After building the ODE model, we try to do something more deeply to our miniToe system by analyze the sensitivity of parameters. Fig.4 shows the numerical integration of sensitivities of parameters in 30 hours. | ||
− | <div align="center"><img src=" | + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/c/c4/T--OUC-China--design3-2.png" width="700" > |
</div> | </div> | ||
<br /> | <br /> | ||
Line 417: | Line 417: | ||
<div align="center"><p >Fig.5 The curve of GFP with the changing cleavage rate</p></div> | <div align="center"><p >Fig.5 The curve of GFP with the changing cleavage rate</p></div> | ||
And the Fig.6 shows that the relationship between the stable expression level of GFP and the claevage rate, . | And the Fig.6 shows that the relationship between the stable expression level of GFP and the claevage rate, . | ||
− | <div align="center"><img src=" | + | <div align="center"><img src="https://static.igem.org/mediawiki/2018/5/55/T--OUC-China--min6.png" width="700" > |
</div> | </div> | ||
<br /> | <br /> |
Revision as of 22:36, 11 October 2018
Design
Reactions
We can describe our miniToe system to be followings:
\[\rightarrow [𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]\]
\[\rightarrow [𝑚𝑅𝑁𝐴_{Csy4}]\]
\[[𝑚𝑅𝑁𝐴_{𝐶𝑠𝑦4}]\rightarrow [𝑚𝑅𝑁𝐴_{𝐶𝑠𝑦4}] + [𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{𝐶𝑠𝑦4}]\]
\[[Protein_{𝐶𝑠𝑦4}]+[crRNA-RBS-mRNA_{gfp}]\leftrightarrow [𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{𝐶𝑠𝑦4}-crRNA-RBS-𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]\]
\[[Protein_{𝐶𝑠𝑦4}-crRNA-RBS-mRNA_{gfp}]\rightarrow [𝑚𝑅𝑁𝐴_{gfp}] + [𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{𝐶𝑠𝑦4}-𝑐𝑟𝑅𝑁𝐴]\]
\[[𝑚𝑅𝑁𝐴_{gfp}]\rightarrow [𝑚𝑅𝑁𝐴_{gfp}] + [𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{gfp}]\]
\[[crRNA-RBS-mRNA_{gfp}]\rightarrow \emptyset\]
\[[𝑚𝑅𝑁𝐴_{𝐶𝑠𝑦4}]\rightarrow \emptyset\]
\[[𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{𝐶𝑠𝑦4}]\rightarrow \emptyset\]
\[[Protein_{𝐶𝑠𝑦4}-crRNA-RBS-mRNA_{gfp}]\rightarrow \emptyset\]
\[[𝑚𝑅𝑁𝐴_{gfp}]\rightarrow \emptyset\]
\[[𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{𝐶𝑠𝑦4}-𝑐𝑟𝑅𝑁𝐴]\rightarrow \emptyset\]
\[[𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{gfp}]\rightarrow \emptyset\]
Two equations, describing the functional binding and cleavage of Csy4 protein in biology, and three parameters kon koff kobs describing the same things in mathematics, are the core of our model.
ODEs
To simulate the dynamics of GFP, we use ordinary differential equations to model the reactions above. And ODEs are given as follows:
\[\frac{d[𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]}{dt}=𝑘_{1}-𝑘_{d1}[𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]\]
\[-𝑘_{on}[Protein_{𝐶𝑠𝑦4}][𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]\]
\[+𝑘_{off}[Protein_{𝐶𝑠𝑦4}-𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]\]
\[\frac{d[𝑚𝑅𝑁𝐴_{𝐶𝑠𝑦4}]}{dt}=𝑘_{2}-𝑘_{d2}[𝑚𝑅𝑁𝐴_{𝐶𝑠𝑦4}]\]
\[\frac{d[Protein_{𝐶𝑠𝑦4}]}{dt}=𝑘_{p2}[𝑚𝑅𝑁𝐴_{𝐶𝑠𝑦4}]-𝑘_{dp2}[Protein_{𝐶𝑠𝑦4}]\]
\[-𝑘_{on}[Protein_{𝐶𝑠𝑦4}][𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]\]
\[+𝑘_{off}[Protein_{𝐶𝑠𝑦4}-𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]\]
\[\frac{d[𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{𝐶𝑠𝑦4}-crRNA-RBS-𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]}{dt}=𝑘_{on}[Protein_{𝐶𝑠𝑦4}][𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]\]
\[-𝑘_{of}[Protein_{𝐶𝑠𝑦4}][Protein_{𝐶𝑠𝑦4}-crRNA-RBS-mRNA_{gfp}]\]
\[-𝑘_{d1}[Protein_{𝐶𝑠𝑦4}][Protein_{𝐶𝑠𝑦4}-crRNA-RBS-mRNA_{gfp}]\]
\[-𝑘_{obs}[Protein_{𝐶𝑠𝑦4}][Protein_{𝐶𝑠𝑦4}-crRNA-RBS-mRNA_{gfp}]\]
\[\frac{d[𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]}{dt}=𝑘_{obs}[𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{𝐶𝑠𝑦4}-crRNA-RBS-𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]-𝑘_{d3}[𝑚𝑅𝑁𝐴_{gfp}]\]
\[\frac{d[𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{𝐶𝑠𝑦4}-crRNA]}{dt}=𝑘_{obs}[𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{𝐶𝑠𝑦4}-crRNA-RBS-𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]-𝑘_{dc2}[𝑃𝑟𝑜𝑡𝑒𝑖𝑛_{𝐶𝑠𝑦4}-𝑐𝑟𝑅𝑁𝐴]\]
\[-𝑘_{on}[Protein_{𝐶𝑠𝑦4}][𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]\]
\[+𝑘_{off}[Protein_{𝐶𝑠𝑦4}-𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]\]
\[\frac{d[Protein_{gfp}]}{dt}=𝑘_{p1}[𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}]-𝑘_{dp1}[Protein_{gfp}]\]
For the readability, the complex symbol is simplified as:
\[\frac{d[A]}{dt}=𝑘_{1}-𝑘_{d1}[A]-𝑘_{on}[C][A]+𝑘_{off}[D]\]
\[\frac{d[B]}{dt}=𝑘_{2}-𝑘_{d2}[B]\]
\[\frac{d[C]}{dt}=𝑘_{p2}[B]-𝑘_{dp2}[C]-𝑘_{on}[C][A]+𝑘_{off}[D]\]
\[\frac{d[D]}{dt}=𝑘_{on}[C][A]-𝑘_{dp2}[C]-𝑘_{off}[D]-𝑘_{dc1}[D]-𝑘_{obs}[D]\]
\[\frac{d[E]}{dt}=𝑘_{obs}[D]-𝑘_{d3}[E]\]
\[\frac{d[F]}{dt}=𝑘_{obs}[D]-𝑘_{d3}[F]\]
\[\frac{d[G]}{dt}=𝑘_{p1}[E]-𝑘_{dp1}[G]\]
Data Processing
The leak in the experiment is an big problem in estimating parameters in our ODEs model, so we processing the data by following formula; \[Data(without leak)=Data(+IPTG)-Data(-IPTG)\]
By doing this, we can reduce some factor which may be influence estimation not just the leak, but also some background noise. So we can get more precise parameters of the Csy4.
Species, symbols and parameters
Species | Symbol | Initial value | Units |
---|---|---|---|
\[𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴_{𝑔𝑓𝑝}\] | A | 15 | \[mol/L\] |
\[𝑚𝑅𝑁𝐴_{Csy4}\] | B | 0 | \[mol/L\] |
\[Protein_{𝐶𝑠𝑦4}\] | C | 0 | \[mol/L\] |
\[Protein_{𝐶𝑠𝑦4}-crRNA-RBS-mRNA_{𝑔𝑓𝑝}\] | D | 0 | \[mol/L\] |
\[𝑚𝑅𝑁𝐴_{gfp}\] | E | 0 | \[mol/L\] |
\[Protein_{𝐶𝑠𝑦4}-𝑐𝑟𝑅𝑁𝐴\] | F | 0 | \[mol/L\] |
\[Protein_{gfp}\] | G | 0 | \[mol/L\] |
Because the [𝑐𝑟𝑅𝑁𝐴 − 𝑅𝐵𝑆 − 𝑚𝑅𝑁𝐴𝑔𝑓𝑝] is under controlled by a constitutive promoter, so we set the initial concentration to 15mol/L .
The other parament we used in the ODEs is listed in the following table:
Parameters | Definition | Units | Value |
---|---|---|---|
\[𝑘_{1}\] | \[h^{-1}\] | 1.955 | |
\[𝑘_{d1}\] | \[h^{-1}\] | 0.002 | |
\[𝑘_{2}\] | \[h^{-1}\] | 1.116 | |
\[𝑘_{d2}\] | \[h^{-1}\] | 0.241 | |
\[𝑘_{p2}\] | \[h^{-1}\] | 1.134 | |
\[𝑘_{dp2}\] | \[h^{-1}\] | 6.547 | |
\[𝑘_{on}\] | \[h^{-1}\] | 23995.469 | |
\[𝑘_{off}\] | \[h^{-1}\] | 2.703 | |
\[𝑘_{dc1}\] | \[h^{-1}\] | 0.024 | |
\[𝑘_{obs}\] | \[h^{-1}\] | 0.327 | |
\[𝑘_{d3}\] | \[h^{-1}\] | 0.472 | |
\[𝑘_{dc2}\] | \[h^{-1}\] | 0.024 | |
\[𝑘_{p1}\] | \[h^{-1}\] | 1.711 | |
\[𝑘_{dp1}\] | \[h^{-1}\] | 0.479 |
Simulation
With the help of Simbiology toolbox in Matlab,we simulate our miniToe system for 30h, the result can be seen in the Fig.1.
Fig.1 The dynamics of GFP by model prediction
Fig.2 The comparison between experimental data and simulation data
Discussion
Combining the biology and math, we now discuss why the dynamics of GFP is like the curve in the Fig.1. In order to explain in detail, we plot the dynamics of all species in the miniToe system in Fig.3.
Fig.3 The dynamics of all species in the miniToe system
Sensitivities Analysis
After building the ODE model, we try to do something more deeply to our miniToe system by analyze the sensitivity of parameters. Fig.4 shows the numerical integration of sensitivities of parameters in 30 hours.
Fig.4 The numerical integration of sensitivities of parameters in 30h
Enlighten by the sensitivity analysis, we give a prediction curve that shows that what will happen in the GFP expression curve if we change the Csy4, and it can be seen in the Fig.5.
Fig.5 The curve of GFP with the changing cleavage rate
Fig.6 The relationship between the stable expression level of GFP and the claevage rate
Contact Us : oucigem@163.com | ©2018 OUC IGEM.All Rights Reserved. | …………