Line 37: | Line 37: | ||
<p>  The aim is to search for the best W that minimize the mean of e.</p> | <p>  The aim is to search for the best W that minimize the mean of e.</p> | ||
− | <span>\[{e^ | + | <span>\[{e^-\Deltar{G^{'\circ}}/RT}\]</span> |
<span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span> | <span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span> | ||
<span>\[f{\rm{(r) = }}\frac{{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}{{{\rm{ 1 + }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}} + {\rm{ }}\sum {{r^'} \in {R_N}\backslash {{\left\{ r \right\}}^{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}} }}\]</span> | <span>\[f{\rm{(r) = }}\frac{{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}{{{\rm{ 1 + }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}} + {\rm{ }}\sum {{r^'} \in {R_N}\backslash {{\left\{ r \right\}}^{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}} }}\]</span> | ||
<span class="equation">\[f{(r)=}\frac{{e}}^{-{\Delta_r}{G^{'\circ/RT}}}{{{{1+}}{{{e}}^{-{\Delta _r}{G^{'\circ/RT}}}}+\sum{{r^'}\in{R_N}\backslash{{\left\{r\right\}}^{{{}}{{{e}}^{-{\Delta _r{G^{'\circ/RT}}}}}</span> | <span class="equation">\[f{(r)=}\frac{{e}}^{-{\Delta_r}{G^{'\circ/RT}}}{{{{1+}}{{{e}}^{-{\Delta _r}{G^{'\circ/RT}}}}+\sum{{r^'}\in{R_N}\backslash{{\left\{r\right\}}^{{{}}{{{e}}^{-{\Delta _r{G^{'\circ/RT}}}}}</span> | ||
+ | <span>$$J(\theta)=-\frac{1}{m}\displaystyle\sum_{i=1}^m y^{(i)}\log(\hat p^{(i)})+(1-y^{(i)})\log(1-\hat p^{(i)})\\ | ||
+ | =-\frac{1}{m}\displaystyle\sum_{i=1}^m y^{(i)}\log(\sigma(-X_b^{(i)}\theta))+(1-y^{(i)})\log(1-\sigma(-X_b^{(i)}\theta))\\ | ||
+ | |||
+ | <span>\[f(r) = \frac{{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}{{{\rm{ 1 + }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}} + {\rm{ }}\sum {{r^'} \in {R_N}\backslash {{\left\{ r \right\}}^{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}} }}\] | ||
+ | <\span> | ||
+ | |||
</body> | </body> | ||
</html> | </html> |
Revision as of 13:20, 13 October 2018