Difference between revisions of "Team:Tec-Monterrey/Description"

Line 124: Line 124:
 
<section id="description" class="seccion-responsiva">
 
<section id="description" class="seccion-responsiva">
 
     <div class="articulo">
 
     <div class="articulo">
E. coding is a system that is able to receive information from its surroundings, in the form of any stimuli that may internalize in the genome, to then store a DNA sequence in the bacteria’s genome, which is specific to a particular stimulus. This system essentially comprises a biological memory, which first operates as a biosensor and then as an information storage unit.  
+
      CRISPR-Cas technology has the capability of storing information. This year, iGEM team Tec-Monterrey aims to use the CRISPR-Cas system to store specific DNA sequences in the genome of E. coli in order to save information about the environment surrounding the bacteria. To make this possible, Cas1-Cas2 proteins, which create the protospacer acquisition in the CRISPR system, are used to insert a synthetic DNA sequence in the CRISPR array within the genome of the bacteria. This synthetic sequence is produced by a second system, called SCRIBE. The final step of our project is reading out the inserted DNA sequence. Using specific primers for polymerase chain reaction (PCR) are used to amplify a section of the CRISPR array where the sequence is inserted. Taking together both systems, our project intends to act as a biological tape recorder capable of sensing external stimuli in the environment and storing their presence in the genome.
 
     </div>
 
     </div>
 
</section>
 
</section>

Revision as of 01:19, 16 October 2018

Description
E. coding
CRISPR-Cas technology has the capability of storing information. This year, iGEM team Tec-Monterrey aims to use the CRISPR-Cas system to store specific DNA sequences in the genome of E. coli in order to save information about the environment surrounding the bacteria. To make this possible, Cas1-Cas2 proteins, which create the protospacer acquisition in the CRISPR system, are used to insert a synthetic DNA sequence in the CRISPR array within the genome of the bacteria. This synthetic sequence is produced by a second system, called SCRIBE. The final step of our project is reading out the inserted DNA sequence. Using specific primers for polymerase chain reaction (PCR) are used to amplify a section of the CRISPR array where the sequence is inserted. Taking together both systems, our project intends to act as a biological tape recorder capable of sensing external stimuli in the environment and storing their presence in the genome.

Contact Us

Sponsors