Difference between revisions of "Team:Pasteur Paris/Demonstrate"

Line 58: Line 58:
 
           <div class="block full">
 
           <div class="block full">
 
                 <p> We successfully cloned a part coding for secretion of NGF in pET43.1a and iGEM plasmid backbone pSB1C3, creating a new part <a href="http://parts.igem.org/Part:BBa_K2616000"style="font-weight: bold ; color:#85196a;"target="_blank"> Bba_K2616000 </a> and confirmed the production of proNGF by Western Blot and mass spectrometry. </p>
 
                 <p> We successfully cloned a part coding for secretion of NGF in pET43.1a and iGEM plasmid backbone pSB1C3, creating a new part <a href="http://parts.igem.org/Part:BBa_K2616000"style="font-weight: bold ; color:#85196a;"target="_blank"> Bba_K2616000 </a> and confirmed the production of proNGF by Western Blot and mass spectrometry. </p>
                 <p>  We grew neurons on our self-made microfluidic chips ans successfully observe axon growth in the presence of commercial NGF</p>
+
                 <p>  We grew neurons on our self-made microfluidic chips ans successfully observe axon growth in the presence of commercial NGF.</p>
 
             </div>
 
             </div>
  
 +
            <div class="block separator-mark"></div>
  
 +
            <div class="block title" id="Kill">
 +
                <h1>KILL SWITCH</h1></div>
  
 +
          <div class="block full">
 +
                <p> We successfully cloned a part coding for toxin/antitoxin (CcdB/CcdA) system in  iGEM plasmid backbone, creating a <b>new  part</b> <a href="http://parts.igem.org/Part:BBa_K2616002"style="font-weight: bold ; color:#85196a;"target="_blank"> Bba_K2616002 </a></p>
  
 +
                        <p>We observed survival and normal growth of our engineered bacteria at 25°C and 37°C and <b>absence of growth</b> at 18°C and 20°C, showing the <b>efficiency of the kill switch</b> if our bacteria are released in the environment.</li>
  
            <div class="block separator-mark"></div>
 
 
            <div class="block title" id="Kill">
 
                <h1>KILL SWITCH</h1>
 
                <i style="text-align: left;"><p>Achievements:<br>
 
                    <ul>
 
                        <li>Successfully cloned a part coding for toxin/antitoxin (CcdB/CcdA) system in  iGEM plasmid backbone, creating a <b>new basic part</b> <a href="http://parts.igem.org/Part:BBa_K2616002"style="font-weight: bold ; color:#85196a;"target="_blank"> Bba_K2616002 </a></li>
 
                        <li>Successfully sequenced  <a href="http://parts.igem.org/Part:BBa_K2616002"style="font-weight: bold ; color:#85196a;"target="_blank"> BBa_K2616002</a> in pSB1C3 and sent to iGEM registry</li>
 
                        <li>Successfully observe survival of our engineered bacteria at 25°C and 37°C and <b>absence of growth</b> at 18°C and 20°C, showing the <b>efficiency of the kill switch</b></li>
 
                    </ul><br></p>
 
                    <p>Next steps:<br>
 
                    <ul>
 
                        <li>Find a system that kills bacteria when released in the environment rather than just stopping their growth</li>
 
                    </ul>
 
                </p></i>
 
 
             </div>
 
             </div>
  

Revision as of 19:07, 16 October 2018

""

NERVE GROWTH FACTOR AND NEURON CULTURE

We successfully cloned a part coding for secretion of NGF in pET43.1a and iGEM plasmid backbone pSB1C3, creating a new part Bba_K2616000 and confirmed the production of proNGF by Western Blot and mass spectrometry.

We grew neurons on our self-made microfluidic chips ans successfully observe axon growth in the presence of commercial NGF.

KILL SWITCH

We successfully cloned a part coding for toxin/antitoxin (CcdB/CcdA) system in iGEM plasmid backbone, creating a new part Bba_K2616002

We observed survival and normal growth of our engineered bacteria at 25°C and 37°C and absence of growth at 18°C and 20°C, showing the efficiency of the kill switch if our bacteria are released in the environment.

MEMBRANE BIOCOMPATIBILITY AND CONDUCTIVITY

DESIGN