|
|
Line 130: |
Line 130: |
| <br> | | <br> |
| <h1 id="EncapsulinDelivery">Encapsulin Antigen Delivery</h1> | | <h1 id="EncapsulinDelivery">Encapsulin Antigen Delivery</h1> |
− | <p class="lead"></p> | + | <p class="lead">In 2016, an article was published by Sebyung Kang and colleagues describing the employment of the protein cage nanoparticles, Encapsulin (Encap), as neoantigenic peptide nanocarriers by genetically incorporating the OT-1 peptide of ovalbumin (OVA) protein (used as vaccine for B16-OVA melanoma tumor model) to three different positions of the Encap subunit (<a href="#Choi2016"><span style="color:blue">Choi <i>et al.</i>, 2016</span></a>). This article motivated us to look further into Encapsulin as a strong candidate for the vaccine platform.</p> |
− |
| + | <p class="lead">In the mentioned study (<a href="#Choi2016"><span style="color:blue">Choi <i>et al.</i>, 2016</span></a>), DCs that were pulsed with constructs of OT1-Encap-C (the model neoantigen peptide OT1 genetically incorporated to the C-terminus of the Encapsulin protein) induced OT-1-specific CD8+ T cell proliferation both in vivo and in vitro. This indicates Encapsulin ability to enhance the uptake of the OT-1 peptides by dendritic cells and the subsequent presentation of these peptides to DC8+ T cells. |
− | ....
| + | OT1-Encap-C presentation to DCs was also able to induce the differentiation of functional effector CD8+ T cells in murine spleen. Finally, OT-1-Encap subcutaneous vaccinations in B16-OVA melanoma tumor bearing mice effectively activated OT-1 peptide specific cytotoxic CD8+ T cells before or even after tumor generation, resulting in significant suppression of tumor growth in prophylactic as well as therapeutic treatments. </p> |
− | (<a href="#Matsushita2012"><span style="color:blue">Matsushita <i>et al.</i>, 2012</span></a>; <a href="#Tran2014"><span style="color:blue">Tran <i>et al.</i>, 2014</span></a>; <a href="#Tran2016"><span style="color:blue">Tran <i>et al.</i>, 2016</span></a>; <a href="#Tran2017"><span style="color:blue">Tran <i>et al.</i>, 2017</span></a>)
| + | <p class="lead">Encapsulin was thus chosen as the platform for CAPOEIRA’s vaccine system, for multiple reasons: |
− | ....
| + | <ol> |
− | (<a href="#Alexandrov2013"><span style="color:blue">Alexandrov <i>et al.</i>, 2013</span></a>; <a href="#Zhu2017"><span style="color:blue">Zhu <i>et al.</i>, 2017</span></a>)
| + | <li>Encapsulin was shown to have an effective activation of dendritic and T cells in vitro and in vivo</li> |
− | <div id="ImportanceCard">
| + | <li>Encapsulin allows for the easy conjugation of libraries of neoantigen, as this can be realized through genetic ligation of the neoantigen oligonucleotide sequences to the C-terminus of Encapsulin</li> |
| + | <li>Encapsulin, along with the neoantigens, can be expressed in a rapid and straightforward manner using the cell free expression systems given to us by synthetic biology. Such expression systems also have the advantage of tremendously lowering the usually exorbitant price tag of traditional neoantigen peptide synthesis.</li> |
| + | </ol> |
| + | |
| + | </p> |
| + | <!--<div id="ImportanceCard"> |
| <div class="card"> | | <div class="card"> |
| <a data-toggle="collapse" href="#AssistedDelivery"> | | <a data-toggle="collapse" href="#AssistedDelivery"> |
Line 172: |
Line 177: |
| </div> | | </div> |
| | | |
− | </p> | + | </p>--> |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
| | | |
Line 178: |
Line 183: |
| <h1 id="EncapsParagraph">Encapsulin</h1> | | <h1 id="EncapsParagraph">Encapsulin</h1> |
| <p class="lead"> | | <p class="lead"> |
− | .... | + | Encapsulin (Figure below) is a protein cage nanoparticle found in the thermophilic bacteria <i>Thermotoga maritima</i>. |
− | <div id="EncapCard"> | + | Its crystal structure has been recently solved, and was published in a paper in 2008 (<a href="#Sutter2008"><span style="color:blue">Sutter <i>et al.</i>, 2008</span></a>). The Encapsulin multimer is assembled from 60 identical 31 kDa monomers having a thin and icosahedral T=1 symmetric cage structure, with interior and exterior diameters of 20 and 24 nm, respectively. The multimer automatically assembles from the monomers once expressed, as it leads to a lower energy state. The C-terminus is outward pointing, allowing for easy conjugation of peptides after the C-terminus (<b>[MODIFY THIS]</b> MP Beker et al., 2016).</p> |
| + | <!--<div id="EncapCard"> |
| <div class="card"> | | <div class="card"> |
| <a data-toggle="collapse" href="#NanocageProfile"> | | <a data-toggle="collapse" href="#NanocageProfile"> |
Line 210: |
Line 216: |
| </div> | | </div> |
| </div> | | </div> |
− | </div> | + | </div>--> |
− | </p> | + | |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
| | | |
Line 290: |
Line 296: |
| <li id="Janssen2005">Janssen, Edith M., et al. "CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death." <i>Nature</i>, 434.7029 (2005): 88.</li> | | <li id="Janssen2005">Janssen, Edith M., et al. "CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death." <i>Nature</i>, 434.7029 (2005): 88.</li> |
| <li id="Amigorena2010">Amigorena, Sebastian, and Ariel Savina. "Intracellular mechanisms of antigen cross presentation in dendritic cells." <i>Current opinion in immunology</i>, 22.1 (2010): 109-117.</li> | | <li id="Amigorena2010">Amigorena, Sebastian, and Ariel Savina. "Intracellular mechanisms of antigen cross presentation in dendritic cells." <i>Current opinion in immunology</i>, 22.1 (2010): 109-117.</li> |
| + | <li id="Choi2016">Choi, Bongseo, et al. "Effective delivery of antigen–encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection." <i>ACS nano</i>, 10.8 (2016): 7339-7350.</li> |
| | | |
| <li id="Sutter2008">Sutter, Markus, et al. "Structural basis of enzyme encapsulation into a bacterial nanocompartment." <i>Nature structural & molecular biology</i>, 15.9 (2008): 939.</li> | | <li id="Sutter2008">Sutter, Markus, et al. "Structural basis of enzyme encapsulation into a bacterial nanocompartment." <i>Nature structural & molecular biology</i>, 15.9 (2008): 939.</li> |
Line 977: |
Line 984: |
| <li id="RNAstructure">Reuter, Jessica S., and David H. Mathews. "RNAstructure: software for RNA secondary structure prediction and analysis." <i>BMC bioinformatics</i>, 11.1 (2010): 129.</li> | | <li id="RNAstructure">Reuter, Jessica S., and David H. Mathews. "RNAstructure: software for RNA secondary structure prediction and analysis." <i>BMC bioinformatics</i>, 11.1 (2010): 129.</li> |
| <li id="Xie">Xie, Kabin, and Yinong Yang. "RNA-guided genome editing in plants using a CRISPR–Cas system." <i>Molecular plant</i>, 6.6 (2013): 1975-1983.</li> | | <li id="Xie">Xie, Kabin, and Yinong Yang. "RNA-guided genome editing in plants using a CRISPR–Cas system." <i>Molecular plant</i>, 6.6 (2013): 1975-1983.</li> |
− | | + | |
− | | + | |
− | | + | |
| </ol> | | </ol> |
| </article> | | </article> |