|
|
Line 39: |
Line 39: |
| <p></p> | | <p></p> |
| <p>Using LUDOX CL-X as a single point reference allowed us to obtain a ratiometric conversion factor to transform absorbance data into a standard OD600 measurement. This is crucial to ensure that plate reader measurements are not volume dependent. After this calibration part we obtained a radiometric conversion factor (Table 2) which will be used in further Interlab study measurements.</p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> | | <p>Using LUDOX CL-X as a single point reference allowed us to obtain a ratiometric conversion factor to transform absorbance data into a standard OD600 measurement. This is crucial to ensure that plate reader measurements are not volume dependent. After this calibration part we obtained a radiometric conversion factor (Table 2) which will be used in further Interlab study measurements.</p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p> |
− | <p>The framework also includes a possibility of adding a selection system that reduces the usage of antibiotics
| + | |
− | (only 1 antibiotic for up to 5 different plasmids!) and an active partitioning system to make sure that low
| + | |
− | copy number plasmid groups are not lost during the division.
| + | |
− | </p>
| + | |
− | <p></p>
| + | |
− | <div class="img-cont">
| + | |
− | <img src="https://static.igem.org/mediawiki/parts/8/84/Collect.png" alt="img">
| + | |
− | <div class="img-label">
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | <h2>Applications</h2>
| + | |
− | <p>
| + | |
− | <h5>Everyday lab work</h5>
| + | |
− | <p>
| + | |
− | A multi-plasmid system that is easy to assemble and control. With our framework the need to limit your
| + | |
− | research to a particular plasmid copy number just because there are not enough right replicons to
| + | |
− | choose from, is eliminated. With SynORI you can easily create a vector with a desired copy number that
| + | |
− | suits your needs.</li>
| + | |
− | </p>
| + | |
− | <h5>Biological computing</h5>
| + | |
− | <p>
| + | |
− | The ability to choose a wide range of copy number options and their control types will make the
| + | |
− | synthetic biology engineering much more flexible and predictable. Introduction of plasmid copy number
| + | |
− | regulation is equivalent to adding a global parameter to a computer system. It enables the coordination
| + | |
− | of multiple gene group expression.
| + | |
− | </p>
| + | |
− | <h5>Smart assembly of large protein complexes</h5>
| + | |
− | <p>
| + | |
− | The co-expression of multi-subunit complexes using different replicons brings incoherency to an already
| + | |
− | chaotic cell system. This can be avoided by using SynORI, as in this framework every plasmid group uses
| + | |
− | the same type of control, and in addition can act in a group-specific manner.</p>
| + | |
− | | + | |
− | <h5>Metabolic engineering</h5>
| + | |
− | <p>
| + | |
− | A big challenge for heterologous expression of multiple gene pathways is to accurately adjust the
| + | |
− | levels of each enzyme to achieve optimal production efficiency. Precise promoter tuning in
| + | |
− | transcriptional control and synthetic ribosome binding sites in translational control are already
| + | |
− | widely used to maintain expression levels. In addition to current approaches, our framework allows a
| + | |
− | simultaneous multiple gene control. Furthermore, an inducible regulation that we offer, can make the
| + | |
− | search for perfect conditions a lot easier.
| + | |
− | | + | |
− | | + | |
− | | + | |
− | </p>
| + | |
− | | + | |
− | | + | |
− | </p>
| + | |
− | <p>
| + | |
− | </p>
| + | |
− | <table style="width:100%">
| + | |
− | <thead>
| + | |
− | <td align='center'>Species sign in ODE system</td>
| + | |
− | <td align='center'>Species</td>
| + | |
− | <td align='center'>Initial concentration (M)</td>
| + | |
− | </thead>
| + | |
− | <tbody>
| + | |
− | <tr>
| + | |
− | <td align='center'>A</td>
| + | |
− | <td align='center'>pDNA+RNA I+RNAII early</td>
| + | |
− | <td align='center'>0</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td align='center'>B</td>
| + | |
− | <td align='center'>pDNA+RNA II short</td>
| + | |
− | <td align='center'>0</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td align='center'>RNAI</td>
| + | |
− | <td align='center'>RNA I</td>
| + | |
− | <td align='center'>1E-6</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td align='center'>D</td>
| + | |
− | <td align='center'>pDNA+RNA II long</td>
| + | |
− | <td align='center'>0</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td align='center'>E</td>
| + | |
− | <td align='center'>pDNA+RNAII primer</td>
| + | |
− | <td align='center'>0</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td align='center'>F</td>
| + | |
− | <td align='center'>RNA II long</td>
| + | |
− | <td align='center'>0</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td align='center'>G</td>
| + | |
− | <td align='center'>pDNA</td>
| + | |
− | <td align='center'>4E-8*</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td align='center'>H</td>
| + | |
− | <td align='center'>pDNA+RNA II+RNA I late</td>
| + | |
− | <td align='center'>0</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td align='center'>RNA II</td>
| + | |
− | <td align='center'>RNA II</td>
| + | |
− | <td align='center'>0</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td align='center'>J</td>
| + | |
− | <td align='center'>RNAI+RNAII</td>
| + | |
− | <td align='center'>0</td>
| + | |
− | </tr>
| + | |
| </tbody> | | </tbody> |
| </table> | | </table> |