Line 25: | Line 25: | ||
h('p', null, 'In the future, we would like to analyze the kinetics of Cas12a reactions carried out directly on LAMP amplicons. This would allow us to verify the sensitivity for the combined assay predicted by our model. Such a combined reaction would also be novel to our knowledge, and we’re interested in examining how the placement of the target sequence on the LAMP amplicons would affect the Cas12a kinetics. Although we’ve already collected data on both target sequences, we haven’t collected this data for a Cas12a reaction run on LAMP amplicons, and only the LAMP amplicons have the differing linear and loop segments, so we were unable to look into this with our current data.'), | h('p', null, 'In the future, we would like to analyze the kinetics of Cas12a reactions carried out directly on LAMP amplicons. This would allow us to verify the sensitivity for the combined assay predicted by our model. Such a combined reaction would also be novel to our knowledge, and we’re interested in examining how the placement of the target sequence on the LAMP amplicons would affect the Cas12a kinetics. Although we’ve already collected data on both target sequences, we haven’t collected this data for a Cas12a reaction run on LAMP amplicons, and only the LAMP amplicons have the differing linear and loop segments, so we were unable to look into this with our current data.'), | ||
h('p', null, 'We were also interested exploring the kinetics of LAMP carried out with cellular reagents but didn’t have time to collect sufficient data for analysis. If we obtain this data in the future, we can apply essentially the same analysis as above to determine relative primer efficiency with cellular reagents. We could also compare how accurately Subramanian and Gomez’s model fits cellular reagent amplification curves and how well if fits purified enzyme data, which could provide us insight into how much background noise is introduced by the cellular reagents.') | h('p', null, 'We were also interested exploring the kinetics of LAMP carried out with cellular reagents but didn’t have time to collect sufficient data for analysis. If we obtain this data in the future, we can apply essentially the same analysis as above to determine relative primer efficiency with cellular reagents. We could also compare how accurately Subramanian and Gomez’s model fits cellular reagent amplification curves and how well if fits purified enzyme data, which could provide us insight into how much background noise is introduced by the cellular reagents.') | ||
+ | ), | ||
+ | h(g.Section, {title: 'References'}, | ||
+ | h('p', null, '[', h('a', {id: 'ref_1'}, '1'), '] Subramanian S, Gomez RD (2014) An Empirical Approach for Quantifying Loop-Mediated Isothermal Amplification (LAMP) Using Escherichia coli as a Model System. PLoS ONE 9(6): e100596. ', h('a', {href: 'https://doi.org/10.1371/journal.pone.0100596'}, 'https://doi.org/10.1371/journal.pone.0100596')) | ||
+ | ') | ||
) | ) | ||
); | ); | ||
</textarea> | </textarea> | ||
</html> | </html> |
Revision as of 08:48, 17 October 2018