Line 59: | Line 59: | ||
<h2>4.2 AfeR-HSL Complexation</h2> | <h2>4.2 AfeR-HSL Complexation</h2> | ||
<p> AfeR is produced by engineered E.coli and functions in cell and its concentration is obtained approximating the number of protein per cell, using the E.coli concentration (cell/L) and the Avogadro number.</p> | <p> AfeR is produced by engineered E.coli and functions in cell and its concentration is obtained approximating the number of protein per cell, using the E.coli concentration (cell/L) and the Avogadro number.</p> | ||
+ | <p>$$\left[ AfeR\right] _{C}=\left( Number of AfeR/cell\right) \cdot \dfrac {\left[ E.coli\right] }{N_{A}}$$</p> | ||
<p> The AfeR-HSL complexation is simply formed that way:</p> | <p> The AfeR-HSL complexation is simply formed that way:</p> | ||
+ | <p>$$AfeR+HSL\leftrightarrow AfeR-HSL$$</p> | ||
<p> Assuming kinetics of AfeR-HSL complexation complexation is fast compared to the rest of the system, we assumed that the free and complexed forms are at equilibrum.</p> | <p> Assuming kinetics of AfeR-HSL complexation complexation is fast compared to the rest of the system, we assumed that the free and complexed forms are at equilibrum.</p> | ||
+ | <p>$$v_{complexation}=v_{dissociation}$$</p> | ||
+ | <p>$$k_{1}\cdot \left[ AfeR\right] _{C}\cdot \left[ HSL\right] _{C}=k_{2}\cdot \left[ AfeR-HSL\right] _{C}$$</p> | ||
+ | <p>$$\left[ AfeR-HSL\right] _{C}=\dfrac {\left[ AfeR\right] _{C}\cdot \left[ HSL\right] _{C}}{K_{eq,AfeR-HSL}}$$</p> | ||
+ | <p>$$K_{eq,AfeR-HSL}=k_{2}/k_{1}$$</p> | ||
<p> • K <sub>eq, AfeR-HSL</sub> : equilibrum constant of the AfeR-HSL complexation (mol/L)</p> | <p> • K <sub>eq, AfeR-HSL</sub> : equilibrum constant of the AfeR-HSL complexation (mol/L)</p> | ||
Line 67: | Line 73: | ||
<h3>4.3.1 DspB Gene Activation</h3> | <h3>4.3.1 DspB Gene Activation</h3> | ||
<p> This process is modeled using a Michaelian formalism depending on its activator (AfeR-HSL complexation) concentration. The promoter strength is also taken into account.</p> | <p> This process is modeled using a Michaelian formalism depending on its activator (AfeR-HSL complexation) concentration. The promoter strength is also taken into account.</p> | ||
+ | <p>$$DspB_{DNA/cell}=DspB_{DNA0/cell}\cdot \dfrac {\left[ AfeR-HSL\right] _{C}}{K_{a,AfeR-HSL}+\left[ AfeR-HSL\right] _{C}}/cdot k_{p,afeR}$$</p> | ||
<p> • DspB <sub>DNA,0/cell</sub> : total number of DspB DNA per cell</p> | <p> • DspB <sub>DNA,0/cell</sub> : total number of DspB DNA per cell</p> | ||
<p> • DspB <sub>DNA/cell</sub> : number of activated DspB DNA per cell</p> | <p> • DspB <sub>DNA/cell</sub> : number of activated DspB DNA per cell</p> | ||
Line 74: | Line 81: | ||
<h3>4.3.2 DspB Transcription</h3> | <h3>4.3.2 DspB Transcription</h3> | ||
<p> The DspB transcription depends on the transcription rate of the strain and the length of the DspB gene. The Avogadro number is used to express the transcription velocity in molar concentration in one cell per time unit.</p> | <p> The DspB transcription depends on the transcription rate of the strain and the length of the DspB gene. The Avogadro number is used to express the transcription velocity in molar concentration in one cell per time unit.</p> | ||
+ | <p>$$v _{transcription,DspB mRNA}=\dfrac {DspB_{DNA/cell}\cdot k_{transcript}\cdot \left( RNA polymerase/gene\right) }{DNA length\cdot N_{A}\cdot V_{intracell}}$$</p> | ||
<p> • k<sub>transcript</sub> : E.coli transcription rate (nucleotides/s)</p> | <p> • k<sub>transcript</sub> : E.coli transcription rate (nucleotides/s)</p> | ||
<p> • RNA polymerase/gene: number of RNA polymerase per gene</p> | <p> • RNA polymerase/gene: number of RNA polymerase per gene</p> | ||
Line 82: | Line 90: | ||
<h3>4.3.3 DspB Translation</h3> | <h3>4.3.3 DspB Translation</h3> | ||
<p> The DspB translation depends on the translation rate of the strain, the mRNA length and the quantity of mRNA. The translation velocity is expressed in molar concentration in one cell per time unit.</p> | <p> The DspB translation depends on the translation rate of the strain, the mRNA length and the quantity of mRNA. The translation velocity is expressed in molar concentration in one cell per time unit.</p> | ||
+ | <p>$$v _{translation,DspB}=\dfrac {\left[ DspB mRNA\right] \cdot k_{translation}\cdot \left( Ribosomes/RNA\right) }{RNA length}$$</p> | ||
<p> • k<sub>translation</sub> : E.coli translation rate (nucleotides/s)</p> | <p> • k<sub>translation</sub> : E.coli translation rate (nucleotides/s)</p> | ||
<p> • Ribosomes/RNA: number of ribosomes per mRNA</p> | <p> • Ribosomes/RNA: number of ribosomes per mRNA</p> | ||
Line 90: | Line 99: | ||
<h3>4.3.4 Degradation</h3> | <h3>4.3.4 Degradation</h3> | ||
<p> Some of the DspB protein and mRNA are degraded. A degradation constant is used to model the degradation velocity.</p> | <p> Some of the DspB protein and mRNA are degraded. A degradation constant is used to model the degradation velocity.</p> | ||
+ | <p>$$v_{degradation,DspB}=K_{deg,DspB}\cdot \left[ DspB\right] _{C}$$</p> | ||
<p> • K<sub>deg,DspB</sub>: DspB degradation constant (s<sup>−1</sup>)</p> | <p> • K<sub>deg,DspB</sub>: DspB degradation constant (s<sup>−1</sup>)</p> | ||
+ | <p>$$v_{degradation,DspB mRNA}=K_{deg,DspB mRNA}\cdot \left[ DspB mRNA\right] _{C}$$</p> | ||
<p> • K<sub>deg,DspB mRNA</sub>: DspB mRNA degradation constant (s<sup>−1</sup>)</p> | <p> • K<sub>deg,DspB mRNA</sub>: DspB mRNA degradation constant (s<sup>−1</sup>)</p> | ||
<h3>4.3.5 DspB Transfer</h3> | <h3>4.3.5 DspB Transfer</h3> | ||
<p> DspB protein needs to be transferred to the water environment to function. This process is taken into account through a passive transusion model.</p> | <p> DspB protein needs to be transferred to the water environment to function. This process is taken into account through a passive transusion model.</p> | ||
+ | <p>$$v_{diffuse,DspB,C-W}=K_{DspB,C-W}\cdot \left( \left[ DspB\right] _{C}-\left[ DspB\right] _{W}\right) $$</p> | ||
<p> • K<sub>DspB,C-W</sub> : transfer coefficient through the membrane (s<sup>−1</sup>)</p> | <p> • K<sub>DspB,C-W</sub> : transfer coefficient through the membrane (s<sup>−1</sup>)</p> | ||
Line 101: | Line 113: | ||
<h2>4.4 Biofilm Removel</h2> | <h2>4.4 Biofilm Removel</h2> | ||
<p> The biofilm is removed by the DspB and the process is modeled assuming a Michaelis-Menten kinetics.</p> | <p> The biofilm is removed by the DspB and the process is modeled assuming a Michaelis-Menten kinetics.</p> | ||
+ | <p>$$v_{remo,biof}=k_{cat,DspB}\cdot \left[ DspB\right] _{W}\cdot \dfrac {\left[ Biof\right] }{k_{M,D}+\left[ Biof\right] }\cdot V_{intracell}\cdot \left[ E.coli\right] $$</p> | ||
<p> • k<sub>cat,DspB</sub> : catalytic constant of the DspB enzyme (s<sup>−1</sup>)</p> | <p> • k<sub>cat,DspB</sub> : catalytic constant of the DspB enzyme (s<sup>−1</sup>)</p> | ||
<p> • K<sub>M,D</sub> : Michaelis constant of the DspB enzyme (mol/L)</p> | <p> • K<sub>M,D</sub> : Michaelis constant of the DspB enzyme (mol/L)</p> | ||
Line 109: | Line 122: | ||
<h3>4.5.1 EntE Gene Activation</h3> | <h3>4.5.1 EntE Gene Activation</h3> | ||
<p> This process is modeled using a Michaelian formalism depending on its activator (AfeR-HSL complexation) concentration. The promoter strength is also taken into account.</p> | <p> This process is modeled using a Michaelian formalism depending on its activator (AfeR-HSL complexation) concentration. The promoter strength is also taken into account.</p> | ||
+ | <p>$$EntE_{DNA/cell}=EntE_{DNA0/cell}\cdot \dfrac {\left[ AfeR-HSL\right] _{C}}{K_{a,AfeR-HSL}+\left[ AfeR-HSL\right] _{C}}\cdot k_{p,afeR}$$</p> | ||
<p> • EntE <sub>DNA,0/cell</sub> : total number of EntE DNA per cell</p> | <p> • EntE <sub>DNA,0/cell</sub> : total number of EntE DNA per cell</p> | ||
<p> • EntE <sub>DNA/cell</sub> : number of activated EntE DNA per cell</p> | <p> • EntE <sub>DNA/cell</sub> : number of activated EntE DNA per cell</p> | ||
Line 116: | Line 130: | ||
<h3>4.5.2 EntE Transcription</h3> | <h3>4.5.2 EntE Transcription</h3> | ||
<p> The EntE transcription depends on the transcription rate of the strain and the length of the EntE gene. The Avogadro number is used to express the transcription velocity in molar concentration in one cell per time unit.</p> | <p> The EntE transcription depends on the transcription rate of the strain and the length of the EntE gene. The Avogadro number is used to express the transcription velocity in molar concentration in one cell per time unit.</p> | ||
+ | <p>$$v_{transcription,EntE mRNA}=\dfrac {EntE_{DNA/cell}\cdot k_{transcript}\cdot \left( RNA polymerase/gene\right) }{DNA length\cdot N_{A}\cdot V_{intracell}}$$</p> | ||
<p> • EntE <sub>DNA,/cell</sub> : number of EntE gene per cell</p> | <p> • EntE <sub>DNA,/cell</sub> : number of EntE gene per cell</p> | ||
<p> • k<sub>transcript</sub> : E.coli transcription rate (nucleotides/s)</p> | <p> • k<sub>transcript</sub> : E.coli transcription rate (nucleotides/s)</p> |
Revision as of 14:15, 17 October 2018