Difference between revisions of "Team:UPF CRG Barcelona/Overexpression"

Line 1: Line 1:
 
{{UPF_CRG_Barcelona}}
 
{{UPF_CRG_Barcelona}}
 
<html>
 
<html>
<link rel="stylesheet" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/styles?action=raw&ctype=text/css" type='text/css'>
+
  <link rel="stylesheet" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/styles?action=raw&ctype=text/css" type='text/css'>
 
+
  <body>
<body>
+
      <div class="sticky-top">
  <div class="sticky-top">
+
        <nav class="navbar has-shadow" role="navigation" aria-label="main navigation" id="navbar">
 
+
            <div class="container">
 
+
              <div class="navbar-brand">
      <nav class="navbar has-shadow" role="navigation" aria-label="main navigation" id="navbar">
+
                  <a class="navbar-logo" href="index.html">
          <div class="container">
+
                  <img src="https://static.igem.org/mediawiki/2018/3/37/T--UPF_CRG_Barcelona--logosensebarcelona.svg" alt="iGEM Barcelona team 2018">
   
+
                  </a>
            <div class="navbar-brand">
+
                  <div class="navbar-burger" data-target="navbar-menu">
              <a class="navbar-logo" href="index.html">
+
                    <span></span>
                <img src="https://static.igem.org/mediawiki/2018/3/37/T--UPF_CRG_Barcelona--logosensebarcelona.svg" alt="iGEM Barcelona team 2018">
+
                    <span></span>
              </a>
+
                    <span></span>
   
+
                  </div>
              <div class="navbar-burger" data-target="navbar-menu">
+
              </div>
                <span></span>
+
              <!-- children of navbar-menu must be navbar-start and/or navbar-end -->
                <span></span>
+
              <div class="navbar-menu" id="navbar-menu">
                <span></span>
+
                  <!-- navbar items -->
              </div>
+
                  <div class="navbar-grid">
 +
                    <!--class is-active for showing active menu-->
 +
                    <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Description">Project</a>
 +
                    <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/DryLab">DryLab</a>
 +
                    <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Parts">Parts</a>
 +
                    <a class="navbar-item is-active" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Deliverables">Deliverables</a>
 +
                    <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/WetLab">WetLab</a>
 +
                    <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Intro_HP">Human Practices</a>
 +
                    <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Aboutteam">Team</a>
 +
                  </div>
 +
              </div>
 
             </div>
 
             </div>
   
+
        </nav>
            <!-- children of navbar-menu must be navbar-start and/or navbar-end -->
+
        <header id="header">
            <div class="navbar-menu" id="navbar-menu">
+
            <div id="blur"></div>
              <!-- navbar items -->
+
            <!-- Swiper -->
              <div class="navbar-grid">
+
            <div class="swiper-container" id="sw-container">
                <!--class is-active for showing active menu-->
+
              <div class="swiper-wrapper">
                <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Description">Project</a>
+
                  <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Background">
                <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/DryLab">DryLab</a>
+
                    <embed src="https://static.igem.org/mediawiki/2018/d/d5/T--UPF_CRG_Barcelona--background.svg" alt="Description">
                <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Parts">Parts</a>
+
                    <p>Background<br>and design</p>
                <a class="navbar-item is-active" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Deliverables">Deliverables</a>
+
                  </a>
                <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/WetLab">WetLab</a>
+
                  <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Overexpression">
                <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Intro_HP">Human Practices</a>
+
                    <embed src="https://static.igem.org/mediawiki/2018/6/6d/T--UPF_CRG_Barcelona--fads.svg" alt="">
                <a style="color: rgb(242, 242, 242)" class="navbar-item" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Aboutteam">Team</a>
+
                    <p>Overexpression</p>
              </div>
+
                  </a>
 +
                  <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Biosensor">
 +
                    <embed src="https://static.igem.org/mediawiki/2018/c/c8/T--UPF_CRG_Barcelona--biosensor.svg" alt="">
 +
                    <p>Biosensor</p>
 +
                  </a>
 +
                  <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Integration">
 +
                    <embed src="https://static.igem.org/mediawiki/2018/c/c3/T--UPF_CRG_Barcelona--mage.svg" alt="">
 +
                    <p>Integration</p>
 +
                  </a>
 +
                  <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Simulation">
 +
                    <embed src="https://static.igem.org/mediawiki/2018/9/95/T--UPF_CRG_Barcelona--demonstration.svg" alt="">
 +
                    <p>Simulation</p>
 +
                  </a>
 +
                  <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Results">
 +
                    <embed src="https://static.igem.org/mediawiki/2018/9/9c/T--UPF_CRG_Barcelona--results.svg" alt="">
 +
                    <p>Results</p>
 +
                  </a>
 +
              </div>
 +
              <!-- Add Arrows -->
 +
              <div class="swiper-button-next"></div>
 +
              <div class="swiper-button-prev"></div>
 
             </div>
 
             </div>
          </div>
+
        </header>
        </nav>
+
 
+
<header id="header">
+
      <div id="blur"></div>
+
      <!-- Swiper -->
+
      <div class="swiper-container" id="sw-container">
+
          <div class="swiper-wrapper">
+
            <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Background">
+
              <embed src="https://static.igem.org/mediawiki/2018/d/d5/T--UPF_CRG_Barcelona--background.svg" alt="Description">
+
              <p>Background<br>and design</p>
+
            </a>
+
            <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Overexpression">
+
              <embed src="https://static.igem.org/mediawiki/2018/6/6d/T--UPF_CRG_Barcelona--fads.svg" alt="">
+
              <p>Overexpression</p>
+
            </a>
+
            <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Biosensor">
+
              <embed src="https://static.igem.org/mediawiki/2018/c/c8/T--UPF_CRG_Barcelona--biosensor.svg" alt="">
+
              <p>Biosensor</p>
+
            </a>
+
            <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Integration">
+
              <embed src="https://static.igem.org/mediawiki/2018/c/c3/T--UPF_CRG_Barcelona--mage.svg" alt="">
+
              <p>Integration</p>
+
            </a>
+
            <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Simulation">
+
              <embed src="https://static.igem.org/mediawiki/2018/9/95/T--UPF_CRG_Barcelona--demonstration.svg" alt="">
+
              <p>Simulation</p>
+
            </a>
+
            <a class="swiper-slide swiper-slide-menu" href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Results">
+
              <embed src="https://static.igem.org/mediawiki/2018/9/9c/T--UPF_CRG_Barcelona--results.svg" alt="">
+
              <p>Results</p>
+
            </a> 
+
        </div>
+
        <!-- Add Arrows -->
+
        <div class="swiper-button-next"></div>
+
        <div class="swiper-button-prev"></div>
+
 
       </div>
 
       </div>
    </header>
+
      <main>
  </div>
+
        <section class="container">
 
+
            <div>
  <main>
+
              <p class="page-title">Enhancing <i>E. Coli</i> beta-oxidation</p>
 
+
              <p>In order to obtain a system with an enhanced long chain fatty acid (LCFA) uptake and degradation we first
    <section class="container">
+
                  considered the overexpression of endogenous <i>E. coli</i> fatty acid (FA) degradation gene family.
 
+
              </p>
      <div>
+
              <p>
 
+
                  LCFAs are essential membrane components and constitute important members of signalling pathways. <i>E. coli</i>
<p class="page-title">Enhancing <i>E. Coli</i> beta-oxidation</p>
+
                  can use FAs with various chain lengths as sole source of carbon and energy [1]. After their uptake, these FAs
        <p>In order to obtain a system with an enhanced long chain fatty acid (LCFA) uptake and degradation we first
+
                  can either be degraded via the beta-oxidation pathway or used as precursors for membrane phospholipid
          considered the overexpression of endogenous <i>E. coli</i> fatty acid (FA) degradation gene family.
+
                  biosynthesis. The degradation pathway is catalysed by the enzymes encoded by the fad regulon, which includes
        </p>
+
                  <b>fadL</b>, <b>fadD</b>, <b>fadE</b>, <b>fadA</b> and <b>fadB</b>[2].
 
+
              </p>
        <p>
+
              <p>
          LCFAs are essential membrane components and constitute important members of signalling pathways. <i>E. coli</i>
+
                  <b>fadL</b> and <b>fadD</b> are responsible for LCFA uptake and activation for their previous metabolism.
          can use FAs with various chain lengths as sole source of carbon and energy [1]. After their uptake, these FAs
+
                  FadL is an outer membrane homodimeric channel involved in the transport of external LCFA to the periplasm
          can either be degraded via the beta-oxidation pathway or used as precursors for membrane phospholipid
+
                  [3]. To metabolize FAs, they must be activated to acyl-CoA esters. This step is performed through <b>FadD</b>,
          biosynthesis. The degradation pathway is catalysed by the enzymes encoded by the fad regulon, which includes
+
                  an inner membrane-associated acyl-CoA synthase [4]. Finally, the complete oxidation of activated LCFA is
          <b>fadL</b>, <b>fadD</b>, <b>fadE</b>, <b>fadA</b> and <b>fadB</b>[2].
+
                  catalysed by the other three fatty-acid degradation gene family: <b>fadE</b>, <b>fadA</b> and <b>fadB</b>.
        </p>
+
              </p>
 
+
              <div class="spacer"></div>
        <p>
+
              <center>
          <b>fadL</b> and <b>fadD</b> are responsible for LCFA uptake and activation for their previous metabolism.
+
                  <img src="https://static.igem.org/mediawiki/2018/9/97/T--UPF_CRG_Barcelona--overexpression_scheme.svg" alt="Scheme Beta-Oxidation"
          FadL is an outer membrane homodimeric channel involved in the transport of external LCFA to the periplasm
+
                    style="width: 50%;">
          [3]. To metabolize FAs, they must be activated to acyl-CoA esters. This step is performed through <b>FadD</b>,
+
                  <p class="fig-caption"><b>Figure 1 | Scheme representing fatty acid intracellular uptake and degradation</b> Both
          an inner membrane-associated acyl-CoA synthase [4]. Finally, the complete oxidation of activated LCFA is
+
                    unsaturated and saturated fatty acids can enter inside the cell through FadL, an outer membrane channel.
          catalysed by the other three fatty-acid degradation gene family: <b>fadE</b>, <b>fadA</b> and <b>fadB</b>.
+
                    Once in the
        </p>
+
                    periplasm, FadD allows the transport of this fatty acids inside the cytosol using a system coupled to
<div class="spacer"></div>
+
                    acyl-coA ester formation. Finally, the beta-oxidation process starts under catalysis of FadE and FadH
      <center><img src="https://static.igem.org/mediawiki/2018/9/97/T--UPF_CRG_Barcelona--overexpression_scheme.svg" alt="Scheme Beta-Oxidation"
+
                    enzymes, followed by FadA and FadB, both of them forming a tetrameric complex which is responsible of
          style="width: 50%;">
+
                    hydration, oxidation and thiolytic cleavage.
        <p class="fig-caption"><b>Figure 1 | Scheme representing fatty acid intracellular uptake and degradation</b> Both
+
                  </p>
              unsaturated and saturated fatty acids can enter inside the cell through FadL, an outer membrane channel.
+
              </center>
              Once in the
+
              <div class="spacer"></div>
              periplasm, FadD allows the transport of this fatty acids inside the cytosol using a system coupled to
+
              <p>Fatty acid degradation and biosynthesis pathways must have a very dynamic expression system according to the
              acyl-coA ester formation. Finally, the beta-oxidation process starts under catalysis of FadE and FadH
+
                  availability of FAs in the environment to maintain cell functionality [5]. Thus, fad genes expression depends
              enzymes, followed by FadA and FadB, both of them forming a tetrameric complex which is responsible of
+
                  directly on the presence of internal LCFA bound to acyl-CoA.  
              hydration, oxidation and thiolytic cleavage.</p></center>  
+
              </p>
<div class="spacer"></div>
+
              <p>FadR protein is the main transcriptional regulator of fad genes and is the key element regulating this
 
+
                  process [6, 7]. It is involved in the negative regulation of LCFA degradation; in the absence of FAs it is
        <p>Fatty acid degradation and biosynthesis pathways must have a very dynamic expression system according to the
+
                  constitutively bound to the fad genes promoter, repressing its transcription. In the presence of LCFA in the
          availability of FAs in the environment to maintain cell functionality [5]. Thus, fad genes expression depends
+
                  medium conversion to acyl-coA esters occurs. Then, LCFA-CoA</b> bind to <b>FadR</b>, causing its release from
          directly on the presence of internal LCFA bound to acyl-CoA. </p>
+
                  the promoters and allowing the transcription of fad genes [8].
 
+
              </p>
        <p>FadR protein is the main transcriptional regulator of fad genes and is the key element regulating this
+
              <div class="spacer"></div>
          process [6, 7]. It is involved in the negative regulation of LCFA degradation; in the absence of FAs it is
+
              <center>
          constitutively bound to the fad genes promoter, repressing its transcription. In the presence of LCFA in the
+
                  <img src="https://static.igem.org/mediawiki/2018/1/18/T--UPF_CRG_Barcelona--biosensor_scheme.svg" alt="Scheme FadR"
          medium conversion to acyl-coA esters occurs. Then, LCFA-CoA</b> bind to <b>FadR</b>, causing its release from
+
                    style="width: 50%;">
          the promoters and allowing the transcription of fad genes [8].
+
                  <p class="fig-caption"><b>Figure 2 |</b> The pfadBA promoter is constitutively repressed by FadR protein. LCFA enter
        </p>
+
                    the cell through the outer membrane receptor fadL, then, they get bound to acety-CoA. LCFA-acetyl-CoA is able
<div class="spacer"></div>
+
                    to bind to FadR which allows it to be released from the promoter making the later active
        <center><img src="https://static.igem.org/mediawiki/2018/1/18/T--UPF_CRG_Barcelona--biosensor_scheme.svg" alt="Scheme FadR"
+
                  </p>
          style="width: 50%;">
+
              </center>
        <p class="fig-caption"><b>Figure 2 |</b> The pfadBA promoter is constitutively repressed by FadR protein. LCFA enter
+
              <div class="spacer"></div>
          the cell through the outer membrane receptor fadL, then, they get bound to acety-CoA. LCFA-acetyl-CoA is able
+
              <p>FadL and FadD play a key role in the regulation of this pathway, as they are the main responsible of the
          to bind to FadR which allows it to be released from the promoter making the later active</p></center>
+
                  uptake of LCFA and its proper conversion to acyl-coA ester in the cytosol. We hypothesized that
<div class="spacer"></div>
+
                  overexpressing FadL and FadD, in presence of extracellular LCFA, would produce an scenario in which LCFA-CoA
        <p>FadL and FadD play a key role in the regulation of this pathway, as they are the main responsible of the
+
                  would repress FadR, resulting in an enhanced expression of the rest of the fad genes. Thus, FadL and FadD
          uptake of LCFA and its proper conversion to acyl-coA ester in the cytosol. We hypothesized that
+
                  were targeted in order to develop a system with an increased LCFA degradation metabolism.
          overexpressing FadL and FadD, in presence of extracellular LCFA, would produce an scenario in which LCFA-CoA
+
              </p>
          would repress FadR, resulting in an enhanced expression of the rest of the fad genes. Thus, FadL and FadD
+
              <p>To do so, we expressed the sequences of either FadD or FadL downstream the TetR repressible promoter
          were targeted in order to develop a system with an increased LCFA degradation metabolism.</p>
+
                  (BBa_R0040). Thus, allowing to tune the protein expression levels with the addition of Anhydrotetracycline
 
+
                  (ATC).
        <p>To do so, we expressed the sequences of either FadD or FadL downstream the TetR repressible promoter
+
              </p>
          (BBa_R0040). Thus, allowing to tune the protein expression levels with the addition of Anhydrotetracycline
+
              <!--Foto esquema constructe-->
          (ATC).</p>
+
              <div class="spacer"></div>
 
+
              <center>
        <!--Foto esquema constructe-->
+
                  <img src="https://static.igem.org/mediawiki/2018/7/72/T--UPF_CRG_Barcelona--fads_scheme.svg" style="width: 450px;">
<div class="spacer"></div>
+
                  <p class="fig-caption"><b>Figure 3 | Schematic representation of the fad gene construct. </b> Scheme representing
        <center><img src="https://static.igem.org/mediawiki/2018/7/72/T--UPF_CRG_Barcelona--fads_scheme.svg" style="width: 450px;">
+
                    the inducible expression system of the fad genes. A double terminator (BBa_B0014), a weak rbs
          <p class="fig-caption"><b>Figure 3 | Schematic representation of the fad gene construct. </b> Scheme representing
+
                    (BBa_B0032), the inducible promoter (BBa_R0040) and the target gene were coupled in this biobrick.
              the inducible expression system of the fad genes. A double terminator (BBa_B0014), a weak rbs
+
                  </p>
              (BBa_B0032), the inducible promoter (BBa_R0040) and the target gene were coupled in this biobrick.</p>
+
              </center>
        </center>
+
              <div class="spacer"></div>
<div class="spacer"></div>
+
              <p>Growth assays were performed in order to study the metabolic burden caused by the expression of these
        <p>Growth assays were performed in order to study the metabolic burden caused by the expression of these
+
                  constructs. Moreover, in order to analyse the functionality of these genetic units, palmitic acid in the
          constructs. Moreover, in order to analyse the functionality of these genetic units, palmitic acid in the
+
                  medium was quantified using cupric-acetate. Therefore, an increase of LCFA uptake when overexpressing these
          medium was quantified using cupric-acetate. Therefore, an increase of LCFA uptake when overexpressing these
+
                  two fad genes could be measured.  
          two fad genes could be measured. </p>
+
              </p>
 
+
              <p>The main approach of our project relies on an effective plasmid overexpression system. However, plasmidic
        <p>The main approach of our project relies on an effective plasmid overexpression system. However, plasmidic
+
                  presence within a live therapeutic in the intestine could deem not so effective, by posing a threat to the
          presence within a live therapeutic in the intestine could deem not so effective, by posing a threat to the
+
                  patients’ health due to the spread of antibiotic resistance to the natural gut ecosystem by plasmid
          patients’ health due to the spread of antibiotic resistance to the natural gut ecosystem by plasmid
+
                  transmission from our probiotic. In order to solve this, we approached overexpression of the mentioned genes
          transmission from our probiotic. In order to solve this, we approached overexpression of the mentioned genes
+
                  from a different perspective; by directly modifying the <i>E. coli</i> genome as explained in the <a href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Integration"
          from a different perspective; by directly modifying the <i>E. coli</i> genome as explained in the <a href="https://2018.igem.org/Team:UPF_CRG_Barcelona/Integration"
+
                    alt="Integration Page">integration section</a>.  
            alt="Integration Page">integration section</a>. </p>
+
              </p>
 
+
              <div class="spacer"></div>
<div class="spacer"></div>
+
              <p class="subapart2">References:</p>
        <p class="subapart2">References:</p>
+
              <p class="references">[1] Iram, S. H., & Cronan, J. E. (2006). The β-oxidation systems of Escherichia coli and
        <p class="references">[1] Iram, S. H., & Cronan, J. E. (2006). The β-oxidation systems of Escherichia coli and
+
                  Salmonella enterica are not functionally equivalent. Journal of bacteriology, 188(2), 599-608.
          Salmonella enterica are not functionally equivalent. Journal of bacteriology, 188(2), 599-608.
+
              </p>
        </p>
+
              <p class="references">[2] Fujita, Yasutaro, Hiroshi Matsuoka, and Kazutake Hirooka. "Regulation of fatty acid
        <p class="references">[2] Fujita, Yasutaro, Hiroshi Matsuoka, and Kazutake Hirooka. "Regulation of fatty acid
+
                  metabolism in bacteria." Molecular microbiology 66.4 (2007): 829-839.
          metabolism in bacteria." Molecular microbiology 66.4 (2007): 829-839.</p>
+
              </p>
        <p class="references">[3] Lepore BW, Indic M, Pham H, Hearn EM, Patel DR, van den Berg B: Ligand-gated
+
              <p class="references">[3] Lepore BW, Indic M, Pham H, Hearn EM, Patel DR, van den Berg B: Ligand-gated
          diffusion across the bacterial outer membrane. Proc Natl Acad Sci U S A 2011, 108:10121–10126.</p>
+
                  diffusion across the bacterial outer membrane. Proc Natl Acad Sci U S A 2011, 108:10121–10126.
        <p class="references">[4] Weimar JD, DiRusso CC, Delio R, Black PN: Functional role of fatty acyl-coenzyme A
+
              </p>
          synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid
+
              <p class="references">[4] Weimar JD, DiRusso CC, Delio R, Black PN: Functional role of fatty acyl-coenzyme A
          residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and
+
                  synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid
          fatty acid transport. J Biol Chem 2002, 277:29369–29376.
+
                  residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and
        </p>
+
                  fatty acid transport. J Biol Chem 2002, 277:29369–29376.
        <p class="references">[5] Janßen, H. J., & Steinbüchel, A. (2014). Fatty acid synthesis in Escherichia coli and
+
              </p>
          its applications towards the production of fatty acid based biofuels. Biotechnology for biofuels, 7(1), 7.
+
              <p class="references">[5] Janßen, H. J., & Steinbüchel, A. (2014). Fatty acid synthesis in Escherichia coli and
        </p>
+
                  its applications towards the production of fatty acid based biofuels. Biotechnology for biofuels, 7(1), 7.
        <p class="references">[6] Henry MF, Cronan JE Jr: Escherichia coli transcription factor that both activates
+
              </p>
          fatty acid synthesis and represses fatty acid degradation. J Mol Biol 1991, 222:843–849. </p>
+
              <p class="references">[6] Henry MF, Cronan JE Jr: Escherichia coli transcription factor that both activates
        <p class="references">[7] Henry MF, Cronan JE Jr: A new mechanism of transcriptional regulation: release of an
+
                  fatty acid synthesis and represses fatty acid degradation. J Mol Biol 1991, 222:843–849.  
          activator triggered by small molecule binding. Cell 1992, 70:671–679.
+
              </p>
        </p>
+
              <p class="references">[7] Henry MF, Cronan JE Jr: A new mechanism of transcriptional regulation: release of an
        <p class="references">[8] Feng Y, Cronan JE Jr: Crosstalk of Escherichia coli FadR with global regulators in
+
                  activator triggered by small molecule binding. Cell 1992, 70:671–679.
          expression of fatty acid transport genes. PLoS One 2012, 7:e46275.
+
              </p>
        </p>
+
              <p class="references">[8] Feng Y, Cronan JE Jr: Crosstalk of Escherichia coli FadR with global regulators in
      </div>
+
                  expression of fatty acid transport genes. PLoS One 2012, 7:e46275.
 
+
              </p>
    </section>
+
            </div>
 
+
        </section>
  </main>
+
      </main>
 
+
      <div class="spacer"></div>
<div class="spacer"></div>
+
 
+
 
</html>
 
</html>
 
 
{{UPF_CRG_Barcelona/footer}}
 
{{UPF_CRG_Barcelona/footer}}
 
 
<html>
 
<html>
  <!-- JS code -->
+
  <!-- JS code -->
<script src="https://2018.igem.org/Team:UPF_CRG_Barcelona/scripts?action=raw&ctype=text/javascript" charset="utf-8" type="text/javascript">
+
  <script src="https://2018.igem.org/Team:UPF_CRG_Barcelona/scripts?action=raw&ctype=text/javascript" charset="utf-8" type="text/javascript"></script>
</script>
+
  <script>
<script>
+
      // Initialize Swiper
    // Initialize Swiper
+
      var swiper = new Swiper('.swiper-container', {
    var swiper = new Swiper('.swiper-container', {
+
        slidesPerView: 6,
      slidesPerView: 6,
+
        slidesPerGroup: 1,
      slidesPerGroup: 1,
+
        loop: true,
      loop: true,
+
        freeMode: true,
      freeMode: true,
+
        observer: true,
      observer: true,
+
        watchOverflow: true,
      watchOverflow: true,
+
        navigation: {
      navigation: {
+
          nextEl: '.swiper-button-next',
        nextEl: '.swiper-button-next',
+
          prevEl: '.swiper-button-prev',
        prevEl: '.swiper-button-prev',
+
        },
      },
+
        keyboard: {
      keyboard: {
+
          enabled: true,
        enabled: true,
+
      },
+
      watchOverflow: true,
+
      freeModeSticky: true,
+
      mousewheel: {
+
        forceToAxis: true,
+
      },
+
      preventClicks: true,
+
      iOSEdgeSwipeDetection: true,
+
      observeParents: true,
+
      breakpoints: {
+
1024: {
+
          slidesPerView: 5,
+
 
         },
 
         },
         768: {
+
         watchOverflow: true,
          slidesPerView: 4,
+
        freeModeSticky: true,
         },       
+
         mousewheel: {
640: {
+
           forceToAxis: true,
           slidesPerView: 3,
+
 
         },
 
         },
         500: {
+
         preventClicks: true,
           slidesPerView: 2,
+
        iOSEdgeSwipeDetection: true,
 +
        observeParents: true,
 +
        breakpoints: {
 +
      1024: {
 +
            slidesPerView: 5,
 +
           },
 +
          768: {
 +
            slidesPerView: 4,
 +
          },       
 +
      640: {
 +
            slidesPerView: 3,
 +
          },
 +
          500: {
 +
            slidesPerView: 2,
 +
          },
 +
          320: {
 +
            slidesPerView: 1,
 +
          }
 
         },
 
         },
        320: {
+
       });
          slidesPerView: 1,
+
  </script>
        }
+
  </body>
       },
+
    });
+
  </script>
+
</body>
+
 
+
 
</html>
 
</html>

Revision as of 15:31, 17 October 2018

Wiki

Enhancing E. Coli beta-oxidation

In order to obtain a system with an enhanced long chain fatty acid (LCFA) uptake and degradation we first considered the overexpression of endogenous E. coli fatty acid (FA) degradation gene family.

LCFAs are essential membrane components and constitute important members of signalling pathways. E. coli can use FAs with various chain lengths as sole source of carbon and energy [1]. After their uptake, these FAs can either be degraded via the beta-oxidation pathway or used as precursors for membrane phospholipid biosynthesis. The degradation pathway is catalysed by the enzymes encoded by the fad regulon, which includes fadL, fadD, fadE, fadA and fadB[2].

fadL and fadD are responsible for LCFA uptake and activation for their previous metabolism. FadL is an outer membrane homodimeric channel involved in the transport of external LCFA to the periplasm [3]. To metabolize FAs, they must be activated to acyl-CoA esters. This step is performed through FadD, an inner membrane-associated acyl-CoA synthase [4]. Finally, the complete oxidation of activated LCFA is catalysed by the other three fatty-acid degradation gene family: fadE, fadA and fadB.

Scheme Beta-Oxidation

Figure 1 | Scheme representing fatty acid intracellular uptake and degradation Both unsaturated and saturated fatty acids can enter inside the cell through FadL, an outer membrane channel. Once in the periplasm, FadD allows the transport of this fatty acids inside the cytosol using a system coupled to acyl-coA ester formation. Finally, the beta-oxidation process starts under catalysis of FadE and FadH enzymes, followed by FadA and FadB, both of them forming a tetrameric complex which is responsible of hydration, oxidation and thiolytic cleavage.

Fatty acid degradation and biosynthesis pathways must have a very dynamic expression system according to the availability of FAs in the environment to maintain cell functionality [5]. Thus, fad genes expression depends directly on the presence of internal LCFA bound to acyl-CoA.

FadR protein is the main transcriptional regulator of fad genes and is the key element regulating this process [6, 7]. It is involved in the negative regulation of LCFA degradation; in the absence of FAs it is constitutively bound to the fad genes promoter, repressing its transcription. In the presence of LCFA in the medium conversion to acyl-coA esters occurs. Then, LCFA-CoA bind to FadR, causing its release from the promoters and allowing the transcription of fad genes [8].

Scheme FadR

Figure 2 | The pfadBA promoter is constitutively repressed by FadR protein. LCFA enter the cell through the outer membrane receptor fadL, then, they get bound to acety-CoA. LCFA-acetyl-CoA is able to bind to FadR which allows it to be released from the promoter making the later active

FadL and FadD play a key role in the regulation of this pathway, as they are the main responsible of the uptake of LCFA and its proper conversion to acyl-coA ester in the cytosol. We hypothesized that overexpressing FadL and FadD, in presence of extracellular LCFA, would produce an scenario in which LCFA-CoA would repress FadR, resulting in an enhanced expression of the rest of the fad genes. Thus, FadL and FadD were targeted in order to develop a system with an increased LCFA degradation metabolism.

To do so, we expressed the sequences of either FadD or FadL downstream the TetR repressible promoter (BBa_R0040). Thus, allowing to tune the protein expression levels with the addition of Anhydrotetracycline (ATC).

Figure 3 | Schematic representation of the fad gene construct. Scheme representing the inducible expression system of the fad genes. A double terminator (BBa_B0014), a weak rbs (BBa_B0032), the inducible promoter (BBa_R0040) and the target gene were coupled in this biobrick.

Growth assays were performed in order to study the metabolic burden caused by the expression of these constructs. Moreover, in order to analyse the functionality of these genetic units, palmitic acid in the medium was quantified using cupric-acetate. Therefore, an increase of LCFA uptake when overexpressing these two fad genes could be measured.

The main approach of our project relies on an effective plasmid overexpression system. However, plasmidic presence within a live therapeutic in the intestine could deem not so effective, by posing a threat to the patients’ health due to the spread of antibiotic resistance to the natural gut ecosystem by plasmid transmission from our probiotic. In order to solve this, we approached overexpression of the mentioned genes from a different perspective; by directly modifying the E. coli genome as explained in the integration section.

References:

[1] Iram, S. H., & Cronan, J. E. (2006). The β-oxidation systems of Escherichia coli and Salmonella enterica are not functionally equivalent. Journal of bacteriology, 188(2), 599-608.

[2] Fujita, Yasutaro, Hiroshi Matsuoka, and Kazutake Hirooka. "Regulation of fatty acid metabolism in bacteria." Molecular microbiology 66.4 (2007): 829-839.

[3] Lepore BW, Indic M, Pham H, Hearn EM, Patel DR, van den Berg B: Ligand-gated diffusion across the bacterial outer membrane. Proc Natl Acad Sci U S A 2011, 108:10121–10126.

[4] Weimar JD, DiRusso CC, Delio R, Black PN: Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport. J Biol Chem 2002, 277:29369–29376.

[5] Janßen, H. J., & Steinbüchel, A. (2014). Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnology for biofuels, 7(1), 7.

[6] Henry MF, Cronan JE Jr: Escherichia coli transcription factor that both activates fatty acid synthesis and represses fatty acid degradation. J Mol Biol 1991, 222:843–849.

[7] Henry MF, Cronan JE Jr: A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell 1992, 70:671–679.

[8] Feng Y, Cronan JE Jr: Crosstalk of Escherichia coli FadR with global regulators in expression of fatty acid transport genes. PLoS One 2012, 7:e46275.