|
|
Line 409: |
Line 409: |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/8/8e/T--EPFL--bloodsample.png" class="img-fluid rounded" width="500" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/65/T--EPFL--blood_sample.png" class="img-fluid rounded" width="500" > |
− | <figcaption class="mt-3 text-muted">ctDNA and miRNA in blood</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 1.</b> ctDNA and miRNA in blood</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 432: |
Line 432: |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/c3/T--EPFL--bloodsample3.png" class="img-fluid rounded" width="500" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/3/32/T--EPFL--ctDNAinblood.png" class="img-fluid rounded" width="500" > |
− | <figcaption class="mt-3 text-muted">Overview of the release of ctDNA in the blood by necrotic cancer cells. These are, along with some miRNAs, promising biomarkers present in the blood.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 2.</b> Overview of the release of ctDNA in the blood by necrotic cancer cells. These are, along with some miRNAs, promising biomarkers present in the blood.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 519: |
Line 519: |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/b/bd/T--EPFL--gRNA.png" class="img-fluid rounded" width="600" > | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/b/bd/T--EPFL--gRNA.png" class="img-fluid rounded" width="600" > |
− | <figcaption class="mt-3 text-muted">Recognition of the target sequence (activator), via complementary binding of the gRNA</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 3.</b> Recognition of the target sequence (activator), via complementary binding of the gRNA</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 541: |
Line 541: |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f2/T--EPFL--Cas12a.png" class="img-fluid rounded" width="1000" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/e/ed/T--EPFL--FluorescentReadout.png" class="img-fluid rounded" width="1000" > |
− | <figcaption class="mt-3 text-muted">Cas12a assay principles: Activation of Cas12a unleashing the proteins endonuclease activity against ssDNA (here a Fluorophore-Quencher reporter).</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 4.</b> Cas12a assay principles: Activation of Cas12a unleashing the proteins endonuclease activity against ssDNA (here a Fluorophore-Quencher reporter).</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 586: |
Line 586: |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/65/T--EPFL--amplificationctDNA.png" class="img-fluid rounded" width="1000" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/d/dd/T--EPFL--ctDNAamplification.png" class="img-fluid rounded" width="1000" > |
− | <figcaption class="mt-3 text-muted">Amplification of the target fragment and introduction of the PAM sequence synthetically.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 5.</b> Amplification of the target fragment and introduction of the PAM sequence synthetically.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 597: |
Line 597: |
| <p class="lead">Although miRNAs are potentially very valid candidates as biomarkers, they are associated with some hurdles (particularly low abundance) which are not completely overcome by currently existing detection methods (<a href="#Miao"><span style="color:blue">Miao <i>et al.</i>, 2015</span></a>). </p> | | <p class="lead">Although miRNAs are potentially very valid candidates as biomarkers, they are associated with some hurdles (particularly low abundance) which are not completely overcome by currently existing detection methods (<a href="#Miao"><span style="color:blue">Miao <i>et al.</i>, 2015</span></a>). </p> |
| <p class="lead">Among different recent amplification techniques, <b>Rolling Circle Amplification</b> has been proved to be one of the most suitable, thanks to its robustness, simplicity, specificity and high sensitivity (<a href="#Cheng"><span style="color:blue">Cheng <i>et al.</i>, 2009</span></a>). Rolling-Circle Amplification (RCA) is an isothermal amplification (contrarily for instance to Polymerase Chain Reaction) where miRNA (or another short RNA or DNA sequence) is amplified by means of a circular DNA template (i.e. a <i>probe</i>) and a special DNA (or RNA) polymerase: the miRNA acts as a primer, with the RCA product (i.e. the <i>amplicon</i>) consisting in a concatemer containing tens to hundreds of tandem repeats that are complementary to the probe (<a href="#Ali"><span style="color:blue">Ali <i>et al.</i>, 2014</span></a>).</p> | | <p class="lead">Among different recent amplification techniques, <b>Rolling Circle Amplification</b> has been proved to be one of the most suitable, thanks to its robustness, simplicity, specificity and high sensitivity (<a href="#Cheng"><span style="color:blue">Cheng <i>et al.</i>, 2009</span></a>). Rolling-Circle Amplification (RCA) is an isothermal amplification (contrarily for instance to Polymerase Chain Reaction) where miRNA (or another short RNA or DNA sequence) is amplified by means of a circular DNA template (i.e. a <i>probe</i>) and a special DNA (or RNA) polymerase: the miRNA acts as a primer, with the RCA product (i.e. the <i>amplicon</i>) consisting in a concatemer containing tens to hundreds of tandem repeats that are complementary to the probe (<a href="#Ali"><span style="color:blue">Ali <i>et al.</i>, 2014</span></a>).</p> |
− | <p class="lead">Toehold-initiated Rolling Circle Amplification (tiRCA), in particular, employs phi-29 DNA polymerase and is based on structure-switchable <b>dumbbell-shaped probes</b> (<a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a>): upon hybridization with the specific target miRNA, one of the two strands of the double-stranded region of the probe is displaced, resulting in an "activated" circular form of the probe with triggers the start of the RCA reaction. The complete mechanism of RCA is shown in the Figure below:</p> | + | <p class="lead">Toehold-initiated Rolling Circle Amplification (tiRCA), in particular, employs phi-29 DNA polymerase and is based on structure-switchable <b>dumbbell-shaped probes</b> (<a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a>): upon hybridization with the specific target miRNA, one of the two strands of the double-stranded region of the probe is displaced, resulting in an "activated" circular form of the probe with triggers the start of the RCA reaction. The complete mechanism of RCA is shown in Figure 6:</p> |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/8/85/T--EPFL--RCAPipeline.png" class="img-fluid rounded" width="1000" > | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/8/85/T--EPFL--RCAPipeline.png" class="img-fluid rounded" width="1000" > |
− | <figcaption class="mt-3 text-muted">Schematic representation of the tiRCA reaction. miRNA is represented in <span style="color:Magenta">magenta</span>, the dumbbell-shaped probe is shown in <span style="color:DarkCyan">light blue</span> and the amplicon in <span style="color:green">green</span>.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 6.</b> Schematic representation of the tiRCA reaction. miRNA is represented in <span style="color:Magenta">magenta</span>, the dumbbell-shaped probe is shown in <span style="color:DarkCyan">light blue</span> and the amplicon in <span style="color:green">green</span>.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 734: |
Line 734: |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/ca/T--EPFL--SYBR.jpeg" class="img-fluid rounded"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/ca/T--EPFL--SYBR.jpeg" class="img-fluid rounded"> |
− | <figcaption class="mt-3 text-muted">"Scheme for miRNA detection by TIRCA in vitro" [Reproduced from <a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a> (Figure 1A)].</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 7.</b> "Scheme for miRNA detection by TIRCA in vitro" [Reproduced from <a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a> (Figure 1A)].</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 773: |
Line 773: |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f2/T--EPFL--probe2structurenew.png" class="img-fluid rounded"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f2/T--EPFL--probe2structurenew.png" class="img-fluid rounded"> |
− | <figcaption class="mt-3 text-muted">Secondary structure of "let-7a probe 1" (Probe 2 for us). dG=-10.40.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 8.</b> Secondary structure of "let-7a probe 1" (Probe 2 for us). dG=-10.40.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 796: |
Line 796: |
| <p class="lead">5'-[reverse complement of miRNA]-[scaffold]-3'</p> | | <p class="lead">5'-[reverse complement of miRNA]-[scaffold]-3'</p> |
| <br> | | <br> |
− | <p class="lead">The expected interaction between amplicon and gRNA is outlined in the figure below:</p> | + | <p class="lead">The expected interaction between amplicon and gRNA is outlined in Figure 9:</p> |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/0/00/T--EPFL--cas9.png" class="img-fluid rounded" width="470"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/0/00/T--EPFL--cas9.png" class="img-fluid rounded" width="470"> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/65/T--EPFL--InteractionProbe2Cas9.png" class="img-fluid rounded" width="450"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/65/T--EPFL--InteractionProbe2Cas9.png" class="img-fluid rounded" width="450"> |
− | <figcaption class="mt-3 text-muted"><i>On the left:</i> Generic interaction between a target and a gRNA for Cas9 [Reproduced from <a href="#Xie"><span style="color:blue">Xie and Yang, 2013</span></a> (Figure 1A)]. <i>On the right:</i> Predicted interaction of one subunit of the amplicon of Probe 2 with the gRNA.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 9.</b> <i>On the left:</i> Generic interaction between a target and a gRNA for Cas9 [Reproduced from <a href="#Xie"><span style="color:blue">Xie and Yang, 2013</span></a> (Figure 1A)]. <i>On the right:</i> Predicted interaction of one subunit of the amplicon of Probe 2 with the gRNA.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 824: |
Line 824: |
| <div class="card-body"> | | <div class="card-body"> |
| <p class="lead">We then tried to design our own probes for Cas 12a, working backwards from the gRNA.</p> | | <p class="lead">We then tried to design our own probes for Cas 12a, working backwards from the gRNA.</p> |
− | <p class="lead">Contrarily to Cas 9, for which the PAM must be on the 3' side of the target, for Cas12a the PAM must be on the 5’ side of the target instead. This implies that the scaffold part of the gRNA must be on the 5’ side (instead of the 3’) as well (Figure below).</p> | + | <p class="lead">Contrarily to Cas 9, for which the PAM must be on the 3' side of the target, for Cas12a the PAM must be on the 5’ side of the target instead. This implies that the scaffold part of the gRNA must be on the 5’ side (instead of the 3’) as well (Figure 10).</p> |
| | | |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f7/T--EPFL--cas12.png" class="img-fluid rounded" width="450"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f7/T--EPFL--cas12.png" class="img-fluid rounded" width="450"> |
− | <figcaption class="mt-3 text-muted">"Schematic representation of Lba Cas12a nuclease sequence recognition and DNA cleavage". [Reproduced from <a href="#NebCas12a"><span style="color:blue">New England BioLabs</span></a>].</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 10.</b> "Schematic representation of Lba Cas12a nuclease sequence recognition and DNA cleavage". [Reproduced from <a href="#NebCas12a"><span style="color:blue">New England BioLabs</span></a>].</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 839: |
Line 839: |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/b/bd/T--EPFL--Cas9Cas12aForMiRNA.png" class="img-fluid rounded" width="800"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/b/bd/T--EPFL--Cas9Cas12aForMiRNA.png" class="img-fluid rounded" width="800"> |
− | <figcaption class="mt-3 text-muted">Comparison of the interaction between target amplicon and gRNA for Cas 9 (<i>on the left</i>) and Cas 12a (<i>on the right</i>).</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 11.</b> Comparison of the interaction between target amplicon and gRNA for Cas 9 (<i>on the left</i>) and Cas 12a (<i>on the right</i>).</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 921: |
Line 921: |
| <p class="lead">5'-(UAAUUUCUACUAAGUGUAGAU)UAAAGGGAGUCGGCGG-3' [<b>gRNA sequence - L_1</b>]</p> | | <p class="lead">5'-(UAAUUUCUACUAAGUGUAGAU)UAAAGGGAGUCGGCGG-3' [<b>gRNA sequence - L_1</b>]</p> |
| <br> | | <br> |
− | <p class="lead">The comparison between the mode of action of the previous, original gRNA and the "new" ones is better explained in the figure below:</p> | + | <p class="lead">The comparison between the mode of action of the previous, original gRNA and the "new" ones is better explained in Figure 12:</p> |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/c2/T--EPFL--comparison_crRNA.png" class="img-fluid rounded" width="1000"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/c2/T--EPFL--comparison_crRNA.png" class="img-fluid rounded" width="1000"> |
− | <figcaption class="mt-3 text-muted">Comparison of the interaction between the gRNA and the amplicon for the three different gRNAs we investigated</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 12.</b> Comparison of the interaction between the gRNA and the amplicon for the three different gRNAs we investigated</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 951: |
Line 951: |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/8/85/T--EPFL--DetectionScheme.png" class="img-fluid rounded" width="800" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/64/T--EPFL--FromBloodTo.png" class="img-fluid rounded" width="800" > |
− | <figcaption class="mt-3 text-muted">Representation of our detection scheme: from a single drop of blood we collect the plasma in which reside our biomarkers, ctDNA and miRNAs. Depending on the follow-up assay (vaccine monitoring or relapse detection), we will amplify specific target sequences that we will detect afterwards using our Cas12a assay.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 13.</b> Representation of our detection scheme: from a single drop of blood we collect the plasma in which reside our biomarkers, ctDNA and miRNAs. Depending on the follow-up assay (vaccine monitoring or relapse detection), we will amplify specific target sequences that we will detect afterwards using our Cas12a assay.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
| <br> | | <br> |
− | <p class="lead">In the following example, the patient receives our treatment based on a cocktail of neoantigens presented on the surface of the encapsulin. We suspect that the blood concentration of ctDNA encoding for the targeted neoantigens will initially increase which symbolizes the patient’s response to the treatment (ie. the tumor cells will undergo apoptosis and release their DNA into the bloodstream). Once the tumor size has extensively decreased due to the effective elimination of tumor cells that express these neoantigens, the detectable amount of ctDNA will be greatly reduced, which would suggest a response to our immunotherapy-based vaccine. In the unfortunate case where the patient relapses (due to the emergence of resistance or the survival of another cell population), chromosomal rearrangements and miRNAs become the object of our detection (although we mention only ctDNA here, since the correlation between the variation of their concentration and the current state of the patient is better understood). These specific biomarkers would alert the patient of the need for imminent medical care in order to confirm such relapse through a validated clinical test (biopsy, imaging, endoscopy). This would greatly improve their chance of survival. | + | <p class="lead">In the following example, the patient receives our treatment based on a cocktail of neoantigens presented on the surface of the encapsulin. The target population decreases with time, which suggests a response to our immunotherapy-based vaccine for a certain period of time but, due to the emergence of resistance or the survival of another cell population, the patient relapses. Chromosomal rearrangements and miRNAs are then the object of our detection, and would suggest in this particular case a potential relapse. It is then strongly recommended for the patient to carry out a clinical test (biopsy, imaging, endoscopy) for confirmation.</p> |
− | </p> | + | |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/7/7d/T--EPFL--ctDNAconcentration.png" class="img-fluid rounded" width="800" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/c8/T--EPFL--GraphDetection.png" class="img-fluid rounded" width="800" > |
− | <figcaption class="mt-3 text-muted">Example of the use of biomarkers as a means of prognosis on the health of a patient with melanoma. In this case, the patient receives our vaccine as a treatment, and we assume that the treatment worked. This would be marked by a decrease in the concentration of ctDNA characteristic of the neoantigens targeted by our vaccine, ideally until their complete eradication. The condition of the patient stabilizes for a certain amount of time but it still ends up in relapse, which is nonetheless promptly marked by an increase of chromosomal rearrangements ctDNA fragments in the blood.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 14.</b> Example of the use of biomarkers as a means of prognosis on the health of a patient with melanoma. In this case, the patient receives our vaccine as a treatment, and we assume that the treatment worked. This would be marked by a decrease in the concentration of ctDNA characteristic of the neoantigens targeted by our vaccine, ideally until their complete eradication. The condition of the patient stabilizes for a certain amount of time but it still ends up in relapse, which is nonetheless promptly marked by an increase of chromosomal rearrangements ctDNA fragments in the blood.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |