Difference between revisions of "Team:H14Z1 Hangzhou/Parts"

Line 1: Line 1:
 +
<!-- https://static.igem.org/mediawiki/2018/0/0a/T--H14Z1_Hangzhou--result_experiment_proof_fig1.png
 +
https://static.igem.org/mediawiki/2018/1/13/T--H14Z1_Hangzhou--result_experiment_proof_fig2.png -->
 +
 
<!DOCTYPE html>
 
<!DOCTYPE html>
 
<html lang="en">
 
<html lang="en">
Line 45: Line 48:
 
                     <h3 class="content_subtitle" style="font-size:22px">-- Part:BBa_K2856001</h3>
 
                     <h3 class="content_subtitle" style="font-size:22px">-- Part:BBa_K2856001</h3>
 
                     <!-- ----------------fig 1----------------- -->
 
                     <!-- ----------------fig 1----------------- -->
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         <b>Modification of bi-functional glutamate--cysteine ligase/glutathione synthase (gshF)</b>
 
                         <b>Modification of bi-functional glutamate--cysteine ligase/glutathione synthase (gshF)</b>
 
                     </p>
 
                     </p>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         The BBa_K2856001 harbors a coding sequence of bi-functional glutamate--cysteine
 
                         The BBa_K2856001 harbors a coding sequence of bi-functional glutamate--cysteine
                         ligase/glutathione synthase (gshF) derived from S.agalactiae. Codon-optimization has been made
+
                         ligase/glutathione synthase (gshF) derived from <i>S. agalactiae</i>. Codon-optimization has been made
                         for Lactococcus Lactis. gshFp catalyzes the conversion of Cys, Glu and Gly to GSH.
+
                         for <i>Lactococcus lactis</i>. gshFp catalyzes the conversion of Cys, Glu and Gly to GSH.
 
                     </p>
 
                     </p>
                     <p><img style="width: 50%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/c/c2/T--H14Z1_Hangzhou--project_parts_fig1.png"></p>
+
                     <p><img style="width: 60%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/c/c2/T--H14Z1_Hangzhou--project_parts_fig1.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 1 Schematic diagram of GSH module.
 
                         Figure. 1 Schematic diagram of GSH module.
 
                     </p>
 
                     </p>
 
                     <!-- ----------------fig 2----------------- -->
 
                     <!-- ----------------fig 2----------------- -->
 
                     <h6 class="content_sub_subtitle">Usage and Biology</h6>
 
                     <h6 class="content_sub_subtitle">Usage and Biology</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         Bifunctional glutamate--cysteine ligase/glutathione synthase (gshF) is an enzyme involved and
 
                         Bifunctional glutamate--cysteine ligase/glutathione synthase (gshF) is an enzyme involved and
 
                         responded to synthetic reaction of GSH. In this reaction, one Cysteine and one Glutamate are
 
                         responded to synthetic reaction of GSH. In this reaction, one Cysteine and one Glutamate are
 
                         converted to one γ-GC, then one γ-GC and one Glycine are converted to one GSH (Figure 2). The
 
                         converted to one γ-GC, then one γ-GC and one Glycine are converted to one GSH (Figure 2). The
                         Lactococcus Lactis NZ9000 has inability to synthesis GSH. In our project, we construct a
+
                         <i>Lactococcus lactis</i> NZ9000 has inability to synthesis GSH. In our project, we construct a
                         plasmid harboring gshF in order to produce GSH in Lactococcus Lactis NZ9000.
+
                         plasmid harboring gshF in order to produce GSH in <i>Lactococcus lactis</i> NZ9000.
 
                     </p>
 
                     </p>
                     <p><img style="width: 80%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/2/2e/T--H14Z1_Hangzhou--project_parts_fig2.png"></p>
+
                     <p><img style="width: 100%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/2/2e/T--H14Z1_Hangzhou--project_parts_fig2.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 2 Enzymatic reaction catalyzed by gshF.
 
                         Figure. 2 Enzymatic reaction catalyzed by gshF.
 
                     </p>
 
                     </p>
Line 73: Line 76:
 
                     <!-- ----------------fig 3----------------- -->
 
                     <!-- ----------------fig 3----------------- -->
 
                     <h6 class="content_sub_subtitle">Construction and validation of plasmid pNZ-gshF</h6>
 
                     <h6 class="content_sub_subtitle">Construction and validation of plasmid pNZ-gshF</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
                         Gene gshF was amplified from genomic DNA of S. agalactiae and cut with restriction enzyme Hind
+
                         Gene gshF was amplified from genomic DNA of <i>S. agalactiae</i> and cut with restriction enzyme Hind
 
                         III and NcoI, and ligased with plasmid pNZ8148 cut with the same enzyme. Then the ligation
 
                         III and NcoI, and ligased with plasmid pNZ8148 cut with the same enzyme. Then the ligation
 
                         product was transferred to E.coli and spread on plates containing 10 mg/L chloramphenicol.
 
                         product was transferred to E.coli and spread on plates containing 10 mg/L chloramphenicol.
 
                     </p>
 
                     </p>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃,
 
                         Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃,
 
                         200 rpm. 1 μl culture were added to the PCR system as template. As shown in Figure. 3, all the
 
                         200 rpm. 1 μl culture were added to the PCR system as template. As shown in Figure. 3, all the
Line 84: Line 87:
 
                         constructed.
 
                         constructed.
 
                     </p>
 
                     </p>
                     <p><img style="width: 20%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/3/35/T--H14Z1_Hangzhou--project_parts_fig3.png"></p>
+
                     <p><img style="width: 30%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/3/35/T--H14Z1_Hangzhou--project_parts_fig3.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px;" >
 
                         Figure. 3 Validation of plasmid pNZ-gshF. M represented marker. 1, 2 and 3 represented three
 
                         Figure. 3 Validation of plasmid pNZ-gshF. M represented marker. 1, 2 and 3 represented three
 
                         randomly
 
                         randomly
Line 93: Line 96:
 
                     <!-- ----------------fig 4----------------- -->
 
                     <!-- ----------------fig 4----------------- -->
 
                     <h6 class="content_sub_subtitle">Protein Analysis</h6>
 
                     <h6 class="content_sub_subtitle">Protein Analysis</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         After transferring the plasmid pNZ-gshF to L. lactis NZ9000, SDS-PAGE was performed to detect
 
                         After transferring the plasmid pNZ-gshF to L. lactis NZ9000, SDS-PAGE was performed to detect
 
                         the protein expression level of gshF gene. The cells were washed twice with 0.1 M PBS after
 
                         the protein expression level of gshF gene. The cells were washed twice with 0.1 M PBS after
Line 102: Line 105:
 
                         concentration while no GshF protein existed in L. lactis NZ9000.
 
                         concentration while no GshF protein existed in L. lactis NZ9000.
 
                     </p>
 
                     </p>
                     <p><img style="width: 30%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/5/52/T--H14Z1_Hangzhou--project_parts_fig4.png"></p>
+
                     <p><img style="width: 40%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/5/52/T--H14Z1_Hangzhou--project_parts_fig4.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 4 SDS PAGE validation of gene gshF expression in L. lactis. M represented marker. WT
 
                         Figure. 4 SDS PAGE validation of gene gshF expression in L. lactis. M represented marker. WT
 
                         represented L. lactis NZ9000. 1-3 represented L. lactis/pNZ-gshF induced with 100, 50 and 20
 
                         represented L. lactis NZ9000. 1-3 represented L. lactis/pNZ-gshF induced with 100, 50 and 20
Line 111: Line 114:
 
                     <!-- ----------------fig 5----------------- -->
 
                     <!-- ----------------fig 5----------------- -->
 
                     <h6 class="content_sub_subtitle">Validation of glutathione (GSH) by HPLC analysis</h6>
 
                     <h6 class="content_sub_subtitle">Validation of glutathione (GSH) by HPLC analysis</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         To confirm the synthetic glutathione in L. lactis/pNZ-gshF, HPLC was performed to analyze the
 
                         To confirm the synthetic glutathione in L. lactis/pNZ-gshF, HPLC was performed to analyze the
 
                         extracts from the strain. Glutathione was identified on the basis of retention times related to
 
                         extracts from the strain. Glutathione was identified on the basis of retention times related to
Line 118: Line 121:
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 70%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/f/fe/T--H14Z1_Hangzhou--project_parts_fig5.png"></p>
 
                     <p><img style="width: 70%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/f/fe/T--H14Z1_Hangzhou--project_parts_fig5.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 5 Validation of glutathione (GSH) by HPLC.
 
                         Figure. 5 Validation of glutathione (GSH) by HPLC.
 
                     </p>
 
                     </p>
Line 125: Line 128:
 
                     <h3 class="content_subtitle" style="font-size:22px">-- Part:BBa_K2856002</h3>
 
                     <h3 class="content_subtitle" style="font-size:22px">-- Part:BBa_K2856002</h3>
 
                     <!-- ----------------fig 1----------------- -->
 
                     <!-- ----------------fig 1----------------- -->
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         <b>Modification of S-adenosylmethionine synthetase (MetK)</b>
 
                         <b>Modification of S-adenosylmethionine synthetase (MetK)</b>
 
                     </p>
 
                     </p>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         The BBa_K2856001 harbors a coding sequence of S-adenosyl-methionine synthetase (MetK) derived
 
                         The BBa_K2856001 harbors a coding sequence of S-adenosyl-methionine synthetase (MetK) derived
                         from Lactococcus lactis NZ9000 genome. The MetK protein catalyzes methionine and ATP to form
+
                         from <i>Lactococcus lactis</i> NZ9000 genome. The MetK protein catalyzes methionine and ATP to form
 
                         S-adenosyl-methionine.
 
                         S-adenosyl-methionine.
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 50%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/5/59/T--H14Z1_Hangzhou--project_parts_fig6.png"></p>
 
                     <p><img style="width: 50%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/5/59/T--H14Z1_Hangzhou--project_parts_fig6.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 1 Schematic diagram of SAM module.
 
                         Figure. 1 Schematic diagram of SAM module.
 
                     </p>
 
                     </p>
Line 140: Line 143:
 
                     <!-- ----------------fig 2----------------- -->
 
                     <!-- ----------------fig 2----------------- -->
 
                     <h6 class="content_sub_subtitle">Usage and Biology</h6>
 
                     <h6 class="content_sub_subtitle">Usage and Biology</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         S-adenosyl-methionine synthetase encoded by gene metK is an enzyme involved and responded to
 
                         S-adenosyl-methionine synthetase encoded by gene metK is an enzyme involved and responded to
 
                         the synthetic reaction of S-adenosyl-methionine (SAM). In this reaction, one molecule
 
                         the synthetic reaction of S-adenosyl-methionine (SAM). In this reaction, one molecule
Line 148: Line 151:
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 80%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/6/6e/T--H14Z1_Hangzhou--project_parts_fig7.png"></p>
 
                     <p><img style="width: 80%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/6/6e/T--H14Z1_Hangzhou--project_parts_fig7.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 2 Enzymatic reaction catalyzed by metK.
 
                         Figure. 2 Enzymatic reaction catalyzed by metK.
 
                     </p>
 
                     </p>
Line 154: Line 157:
 
                     <!-- ----------------fig 3----------------- -->
 
                     <!-- ----------------fig 3----------------- -->
 
                     <h6 class="content_sub_subtitle">Construction and validation of plasmid pNZ-metK</h6>
 
                     <h6 class="content_sub_subtitle">Construction and validation of plasmid pNZ-metK</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
                         Gene metK was amplified from genomic DNA of Lactococcus lactis NZ9000 and cut with restriction
+
                         Gene metK was amplified from genomic DNA of <i>Lactococcus lactis</i> NZ9000 and cut with restriction
 
                         enzyme Hind III and KpnI, and ligased with plasmid pNZ8148 cut with the same enzyme. Then the
 
                         enzyme Hind III and KpnI, and ligased with plasmid pNZ8148 cut with the same enzyme. Then the
 
                         ligation product was transferred to E.coli and spread on plates containing 10 mg/L
 
                         ligation product was transferred to E.coli and spread on plates containing 10 mg/L
 
                         chloramphenicol.
 
                         chloramphenicol.
 
                     </p>
 
                     </p>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃,
 
                         Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃,
 
                         200 rpm. 1 μl culture were added to the PCR system as template. As shown in Figure. 3, all the
 
                         200 rpm. 1 μl culture were added to the PCR system as template. As shown in Figure. 3, all the
Line 167: Line 170:
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 20%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/f/fa/T--H14Z1_Hangzhou--project_parts_fig8.png"></p>
 
                     <p><img style="width: 20%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/f/fa/T--H14Z1_Hangzhou--project_parts_fig8.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 3 Validation of plasmid pNZ-metK. M represented marker. 1-5 represented three randomly
 
                         Figure. 3 Validation of plasmid pNZ-metK. M represented marker. 1-5 represented three randomly
 
                         picked colonies.
 
                         picked colonies.
Line 174: Line 177:
 
                     <!-- ----------------fig 4----------------- -->
 
                     <!-- ----------------fig 4----------------- -->
 
                     <h6 class="content_sub_subtitle">Protein Analysis</h6>
 
                     <h6 class="content_sub_subtitle">Protein Analysis</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         After transferring the plasmid pNZ-metK to L. lactis NZ9000, SDS-PAGE was performed to detect
 
                         After transferring the plasmid pNZ-metK to L. lactis NZ9000, SDS-PAGE was performed to detect
 
                         the protein expression level of metK gene. The cells were washed twice with 0.1 M PBS after
 
                         the protein expression level of metK gene. The cells were washed twice with 0.1 M PBS after
Line 184: Line 187:
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 30%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/f/f4/T--H14Z1_Hangzhou--project_parts_fig9.png"></p>
 
                     <p><img style="width: 30%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/f/f4/T--H14Z1_Hangzhou--project_parts_fig9.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 4 SDS PAGE validation of gene metK expression in L. lactis. M represented marker. WT
 
                         Figure. 4 SDS PAGE validation of gene metK expression in L. lactis. M represented marker. WT
 
                         represented L. lactis NZ9000. 1-3 represented L. lactis/pNZ-metK induced with 100 50 and 20
 
                         represented L. lactis NZ9000. 1-3 represented L. lactis/pNZ-metK induced with 100 50 and 20
Line 192: Line 195:
 
                     <!-- ----------------fig 5----------------- -->
 
                     <!-- ----------------fig 5----------------- -->
 
                     <h6 class="content_sub_subtitle">Validation of S-adenosyl-methionine (SAM) by HPLC analysis</h6>
 
                     <h6 class="content_sub_subtitle">Validation of S-adenosyl-methionine (SAM) by HPLC analysis</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         To confirm the synthetic S-adenosyl-methionine in L. lactis/pNZ-metK, HPLC was performed to
 
                         To confirm the synthetic S-adenosyl-methionine in L. lactis/pNZ-metK, HPLC was performed to
 
                         analyze the extracts from the strain. S-adenosyl-methionine was identified on the basis of
 
                         analyze the extracts from the strain. S-adenosyl-methionine was identified on the basis of
Line 200: Line 203:
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 70%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/8/85/T--H14Z1_Hangzhou--project_parts_fig10.png"></p>
 
                     <p><img style="width: 70%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/8/85/T--H14Z1_Hangzhou--project_parts_fig10.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 5 Validation of S-adenosyl-methionine (SAM) by HPLC.
 
                         Figure. 5 Validation of S-adenosyl-methionine (SAM) by HPLC.
 
                     </p>
 
                     </p>
Line 210: Line 213:
 
                         <b>Modification of cell wall anchor domain-containing protein (CwaA)</b>
 
                         <b>Modification of cell wall anchor domain-containing protein (CwaA)</b>
 
                     </p>
 
                     </p>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         BBa_K2856003 harbors an adhesion-associated protein called cwaA. The cwaA encodes a protein
 
                         BBa_K2856003 harbors an adhesion-associated protein called cwaA. The cwaA encodes a protein
 
                         containing multiple domains, including five cell wall surface anchor repeat domains and an
 
                         containing multiple domains, including five cell wall surface anchor repeat domains and an
 
                         LPxTG-like cell wall anchor motif.
 
                         LPxTG-like cell wall anchor motif.
 
                     </p>
 
                     </p>
                     <p><img style="width: 50%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/4/46/T--H14Z1_Hangzhou--project_parts_fig11.png"></p>
+
                     <p><img style="width: 60%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/4/46/T--H14Z1_Hangzhou--project_parts_fig11.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 1 Schematic diagram of adhesion factor module.
 
                         Figure. 1 Schematic diagram of adhesion factor module.
 
                     </p>
 
                     </p>
Line 222: Line 225:
 
                     <!-- ----------------fig 2----------------- -->
 
                     <!-- ----------------fig 2----------------- -->
 
                     <h6 class="content_sub_subtitle">Usage and Biology</h6>
 
                     <h6 class="content_sub_subtitle">Usage and Biology</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         The cwaA gene encodes 923 amino acids with a predicted molecular weight of 93.7 kD. The C
 
                         The cwaA gene encodes 923 amino acids with a predicted molecular weight of 93.7 kD. The C
 
                         terminus of CwaA contains an LPQTDE (LPxTG-like cell wall anchoring) motif belonging to the
 
                         terminus of CwaA contains an LPQTDE (LPxTG-like cell wall anchoring) motif belonging to the
Line 234: Line 237:
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 50%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/6/6b/T--H14Z1_Hangzhou--project_parts_fig12.png"></p>
 
                     <p><img style="width: 50%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/6/6b/T--H14Z1_Hangzhou--project_parts_fig12.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 2 Enzymatic reaction catalyzed by metK.
 
                         Figure. 2 Enzymatic reaction catalyzed by metK.
 
                     </p>
 
                     </p>
Line 240: Line 243:
 
                     <!-- ----------------fig 3----------------- -->
 
                     <!-- ----------------fig 3----------------- -->
 
                     <h6 class="content_sub_subtitle">Construction and validation of plasmid pNZ-cwaA</h6>
 
                     <h6 class="content_sub_subtitle">Construction and validation of plasmid pNZ-cwaA</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         Gene cwaA is from genomic DNA of Lactobacillus plantarum NL42 .In order to remove some illegal
 
                         Gene cwaA is from genomic DNA of Lactobacillus plantarum NL42 .In order to remove some illegal
 
                         restriction enzyme sites and add a HIS tag, the gene cwaA was synthesized by Shanghai Generay
 
                         restriction enzyme sites and add a HIS tag, the gene cwaA was synthesized by Shanghai Generay
Line 251: Line 254:
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 20%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/c/ce/T--H14Z1_Hangzhou--project_parts_fig13.png"></p>
 
                     <p><img style="width: 20%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/c/ce/T--H14Z1_Hangzhou--project_parts_fig13.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 3 Validation of plasmid pNZ-cwaA. M represented marker. 1-4 represented three randomly
 
                         Figure. 3 Validation of plasmid pNZ-cwaA. M represented marker. 1-4 represented three randomly
 
                         picked colonies.
 
                         picked colonies.
Line 259: Line 262:
 
                     <h6 class="content_sub_subtitle">Validation of self-aggregation of the recombinant L.
 
                     <h6 class="content_sub_subtitle">Validation of self-aggregation of the recombinant L.
 
                         lactis/pNZ-cwaA</h6>
 
                         lactis/pNZ-cwaA</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         To evaluate whether CwaA was effective for adhesion, we performed self-aggregation assays. The
 
                         To evaluate whether CwaA was effective for adhesion, we performed self-aggregation assays. The
 
                         cells were collected and washed twice with o.1M PBS (pH=7.0).Then the cells were resuspended in
 
                         cells were collected and washed twice with o.1M PBS (pH=7.0).Then the cells were resuspended in
Line 269: Line 272:
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 30%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/4/42/T--H14Z1_Hangzhou--project_parts_fig14.png"></p>
 
                     <p><img style="width: 30%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/4/42/T--H14Z1_Hangzhou--project_parts_fig14.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 4 Self-aggregation value of L. lactis NZ9000 and L. lactis/pNZ-cwaA.
 
                         Figure. 4 Self-aggregation value of L. lactis NZ9000 and L. lactis/pNZ-cwaA.
 
                     </p>
 
                     </p>
Line 276: Line 279:
 
                     <!-- ----------------fig 1----------------- -->
 
                     <!-- ----------------fig 1----------------- -->
 
                     <h6 class="content_sub_subtitle">Plasmid pNZ-GM</h6>
 
                     <h6 class="content_sub_subtitle">Plasmid pNZ-GM</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         Plasmid pNZ-GM harbors gene gshF and gene metK. Combing the modules in one plasmid to validate
 
                         Plasmid pNZ-GM harbors gene gshF and gene metK. Combing the modules in one plasmid to validate
 
                         the function of simultaneously expression of protein GshF and MetK.
 
                         the function of simultaneously expression of protein GshF and MetK.
Line 282: Line 285:
 
                     <!-- ----------------fig 2----------------- -->
 
                     <!-- ----------------fig 2----------------- -->
 
                     <h6 class="content_sub_subtitle">Construction of plasmid pNZ-GM</h6>
 
                     <h6 class="content_sub_subtitle">Construction of plasmid pNZ-GM</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         Gene gshF and metK were expressed in tandem and controlled by the same inducible promoter
 
                         Gene gshF and metK were expressed in tandem and controlled by the same inducible promoter
 
                         PnisA. Gibson assembly method was used to join gshF and metK to form pNZ-GM and then
 
                         PnisA. Gibson assembly method was used to join gshF and metK to form pNZ-GM and then
Line 289: Line 292:
 
                     <!-- ----------------fig 3----------------- -->
 
                     <!-- ----------------fig 3----------------- -->
 
                     <h6 class="content_sub_subtitle">Validation of plasmid pNZ-cwaA</h6>
 
                     <h6 class="content_sub_subtitle">Validation of plasmid pNZ-cwaA</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃,
 
                         Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃,
 
                         200 rpm. 1 μl culture were added to the PCR system as template. The length of the fragment
 
                         200 rpm. 1 μl culture were added to the PCR system as template. The length of the fragment
Line 297: Line 300:
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 20%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/4/4d/T--H14Z1_Hangzhou--project_parts_fig23.png"></p>
 
                     <p><img style="width: 20%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/4/4d/T--H14Z1_Hangzhou--project_parts_fig23.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 1 Validation of plasmid pNZ-GM. M represented marker. 1 to 6 represented randomly
 
                         Figure. 1 Validation of plasmid pNZ-GM. M represented marker. 1 to 6 represented randomly
 
                         picked colonies.
 
                         picked colonies.
Line 303: Line 306:
 
                     <!-- ----------------fig 4----------------- -->
 
                     <!-- ----------------fig 4----------------- -->
 
                     <h6 class="content_sub_subtitle">Functional characterization of plasmid pNZ-GM</h6>
 
                     <h6 class="content_sub_subtitle">Functional characterization of plasmid pNZ-GM</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         After we introduced the plasmid pNZ-GM to L. lactis NZ9000, we tested the GSH and SAM
 
                         After we introduced the plasmid pNZ-GM to L. lactis NZ9000, we tested the GSH and SAM
                         production. Compared with wild type L. lactis NZ9000, the engineered strain L.lactis/pNZ-GM
+
                         production. Compared with wild type L. lactis NZ9000, the engineered strain <i>L.lactis</i>/pNZ-GM
 
                         produced more GSH and SAM.
 
                         produced more GSH and SAM.
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 50%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/5/53/T--H14Z1_Hangzhou--project_parts_fig24.png"></p>
 
                     <p><img style="width: 50%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/5/53/T--H14Z1_Hangzhou--project_parts_fig24.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 2 GSH and SAM production of strain L. lactis NZ9000 and L. lactis/pNZ-GM. Asterisk
 
                         Figure. 2 GSH and SAM production of strain L. lactis NZ9000 and L. lactis/pNZ-GM. Asterisk
 
                         represented none production.
 
                         represented none production.
Line 318: Line 321:
 
                     <!-- ----------------fig 1----------------- -->
 
                     <!-- ----------------fig 1----------------- -->
 
                     <h6 class="content_sub_subtitle">Plasmid pNZ-GMcA</h6>
 
                     <h6 class="content_sub_subtitle">Plasmid pNZ-GMcA</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         Plasmid pNZ-GMcA harbors gene gshF, gene metK and cwaA. Combing three modules in one plasmid in
 
                         Plasmid pNZ-GMcA harbors gene gshF, gene metK and cwaA. Combing three modules in one plasmid in
                         order to improve the colonization ability of Lactococcus lactis while producing GSH and SAM.
+
                         order to improve the colonization ability of <i>Lactococcus lactis</i> while producing GSH and SAM.
 
                     </p>
 
                     </p>
 
                     <!-- ----------------fig 2----------------- -->
 
                     <!-- ----------------fig 2----------------- -->
 
                     <h6 class="content_sub_subtitle">Construction of plasmid pNZ-GMcA</h6>
 
                     <h6 class="content_sub_subtitle">Construction of plasmid pNZ-GMcA</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         Plasmid pNZ-GM and adhesion module amplified from plasmid pNZ-cwaA were cut by Pst I and Sal I,
 
                         Plasmid pNZ-GM and adhesion module amplified from plasmid pNZ-cwaA were cut by Pst I and Sal I,
 
                         then were linked with T4 DNA ligase and transferred to E.coli DH5α.
 
                         then were linked with T4 DNA ligase and transferred to E.coli DH5α.
Line 330: Line 333:
 
                     <!-- ----------------fig 3----------------- -->
 
                     <!-- ----------------fig 3----------------- -->
 
                     <h6 class="content_sub_subtitle">Validation of plasmid pNZ-GMcA</h6>
 
                     <h6 class="content_sub_subtitle">Validation of plasmid pNZ-GMcA</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃,
 
                         Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃,
 
                         200 rpm. 1 μl cultures were added to the PCR system as template. The length of the fragment 1
 
                         200 rpm. 1 μl cultures were added to the PCR system as template. The length of the fragment 1
Line 339: Line 342:
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 40%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/c/c9/T--H14Z1_Hangzhou--project_parts_fig25.png"></p>
 
                     <p><img style="width: 40%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/c/c9/T--H14Z1_Hangzhou--project_parts_fig25.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 1 Validation of plasmid pNZ-GMcA. M represented marker. gm-1 to gm-5 and cA-1 to cA-5
 
                         Figure. 1 Validation of plasmid pNZ-GMcA. M represented marker. gm-1 to gm-5 and cA-1 to cA-5
 
                         all represented the same five randomly picked colonies.
 
                         all represented the same five randomly picked colonies.
Line 345: Line 348:
 
                     <!-- ----------------fig 4----------------- -->
 
                     <!-- ----------------fig 4----------------- -->
 
                     <h6 class="content_sub_subtitle">Functional characterization of plasmid pNZ-GMcA</h6>
 
                     <h6 class="content_sub_subtitle">Functional characterization of plasmid pNZ-GMcA</h6>
                     <p class="content_context">
+
                     <p class="content_context" style="text-align:justify; text-indent:2em">
 
                         After we introduced the plasmid pNZ-GMcA to L. lactis NZ9000, we tested the GSH and SAM
 
                         After we introduced the plasmid pNZ-GMcA to L. lactis NZ9000, we tested the GSH and SAM
 
                         production and self-aggregation value to evaluate adhesivity of the strain. As depicted in
 
                         production and self-aggregation value to evaluate adhesivity of the strain. As depicted in
                         Figure. 2, compared with wild type L. lactis NZ9000, the engineered strain L.lactis/pNZ-GMcA
+
                         Figure. 2, compared with wild type L. lactis NZ9000, the engineered strain <i>L.lactis</i>/pNZ-GMcA
 
                         produced more GSH and SAM and showed better adhesivity.
 
                         produced more GSH and SAM and showed better adhesivity.
  
 
                     </p>
 
                     </p>
 
                     <p><img style="width: 60%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/3/37/T--H14Z1_Hangzhou--project_parts_fig26.png"></p>
 
                     <p><img style="width: 60%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/3/37/T--H14Z1_Hangzhou--project_parts_fig26.png"></p>
                     <p class="content_context" style="text-align:center; font-size:8px">
+
                     <p class="content_context" style="text-align:center; font-size:18px">
 
                         Figure. 2 GSH and SAM production and self-aggregation value of strain L. lactis NZ9000 and L.
 
                         Figure. 2 GSH and SAM production and self-aggregation value of strain L. lactis NZ9000 and L.
 
                         lactis/pNZ-GMcA. Asterisk represented none production.
 
                         lactis/pNZ-GMcA. Asterisk represented none production.

Revision as of 03:30, 18 October 2018


<!DOCTYPE html>

Parts

Basic parts

-- Part:BBa_K2856001

Modification of bi-functional glutamate--cysteine ligase/glutathione synthase (gshF)

The BBa_K2856001 harbors a coding sequence of bi-functional glutamate--cysteine ligase/glutathione synthase (gshF) derived from S. agalactiae. Codon-optimization has been made for Lactococcus lactis. gshFp catalyzes the conversion of Cys, Glu and Gly to GSH.

Figure. 1 Schematic diagram of GSH module.

Usage and Biology

Bifunctional glutamate--cysteine ligase/glutathione synthase (gshF) is an enzyme involved and responded to synthetic reaction of GSH. In this reaction, one Cysteine and one Glutamate are converted to one γ-GC, then one γ-GC and one Glycine are converted to one GSH (Figure 2). The Lactococcus lactis NZ9000 has inability to synthesis GSH. In our project, we construct a plasmid harboring gshF in order to produce GSH in Lactococcus lactis NZ9000.

Figure. 2 Enzymatic reaction catalyzed by gshF.

Construction and validation of plasmid pNZ-gshF

Gene gshF was amplified from genomic DNA of S. agalactiae and cut with restriction enzyme Hind III and NcoI, and ligased with plasmid pNZ8148 cut with the same enzyme. Then the ligation product was transferred to E.coli and spread on plates containing 10 mg/L chloramphenicol.

Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃, 200 rpm. 1 μl culture were added to the PCR system as template. As shown in Figure. 3, all the picked colonies had gene gshF, illustrating that the plasmid pNZ-gshF was successfully constructed.

Figure. 3 Validation of plasmid pNZ-gshF. M represented marker. 1, 2 and 3 represented three randomly picked colonies.

Protein Analysis

After transferring the plasmid pNZ-gshF to L. lactis NZ9000, SDS-PAGE was performed to detect the protein expression level of gshF gene. The cells were washed twice with 0.1 M PBS after centrifugation. Crude protein was extracted through cell breaking using ultrasonication and centrifugation. Then the supernatant of the samples were used to analysis the protein expression. As shown in Figure. 4, expected bands of the GshF protein were observed on the gel in the lane of recombinant L. lactis containing pNZ-gshF induced with different nisin concentration while no GshF protein existed in L. lactis NZ9000.

Figure. 4 SDS PAGE validation of gene gshF expression in L. lactis. M represented marker. WT represented L. lactis NZ9000. 1-3 represented L. lactis/pNZ-gshF induced with 100, 50 and 20 ng/ml nisin.

Validation of glutathione (GSH) by HPLC analysis

To confirm the synthetic glutathione in L. lactis/pNZ-gshF, HPLC was performed to analyze the extracts from the strain. Glutathione was identified on the basis of retention times related to standard sample. According to the retention time of standard glutathione sample, it can be confirmed that glutathione was synthesized in L. lactis/pNZ-gshF.

Figure. 5 Validation of glutathione (GSH) by HPLC.

-- Part:BBa_K2856002

Modification of S-adenosylmethionine synthetase (MetK)

The BBa_K2856001 harbors a coding sequence of S-adenosyl-methionine synthetase (MetK) derived from Lactococcus lactis NZ9000 genome. The MetK protein catalyzes methionine and ATP to form S-adenosyl-methionine.

Figure. 1 Schematic diagram of SAM module.

Usage and Biology

S-adenosyl-methionine synthetase encoded by gene metK is an enzyme involved and responded to the synthetic reaction of S-adenosyl-methionine (SAM). In this reaction, one molecule methionine and one molecule ATP are converted to one molecule SAM (Figure 2). The L. lactis NZ9000 has the ability to synthesize SAM, but just enough for itself. In our project, we constructed a plasmid harboring metK in order to produce more SAM in L. lactis.

Figure. 2 Enzymatic reaction catalyzed by metK.

Construction and validation of plasmid pNZ-metK

Gene metK was amplified from genomic DNA of Lactococcus lactis NZ9000 and cut with restriction enzyme Hind III and KpnI, and ligased with plasmid pNZ8148 cut with the same enzyme. Then the ligation product was transferred to E.coli and spread on plates containing 10 mg/L chloramphenicol.

Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃, 200 rpm. 1 μl culture were added to the PCR system as template. As shown in Figure. 3, all the picked colonies had gene metK, illustrating that the plasmid pNZ-metK was successfully constructed.

Figure. 3 Validation of plasmid pNZ-metK. M represented marker. 1-5 represented three randomly picked colonies.

Protein Analysis

After transferring the plasmid pNZ-metK to L. lactis NZ9000, SDS-PAGE was performed to detect the protein expression level of metK gene. The cells were washed twice with 0.1 M PBS after centrifugation. Crude protein was extracted through cell breaking using ultrasonication and centrifugation. Then the supernatant of the samples were used to analysis the protein expression. As shown in Figure. 4, expected bands of the MetK protein were observed on the gel. Recombinant L. lactis containing pNZ-metK induced with different nisin concentration showed higher expression of MetK protein.

Figure. 4 SDS PAGE validation of gene metK expression in L. lactis. M represented marker. WT represented L. lactis NZ9000. 1-3 represented L. lactis/pNZ-metK induced with 100 50 and 20 ng/ml nisin.

Validation of S-adenosyl-methionine (SAM) by HPLC analysis

To confirm the synthetic S-adenosyl-methionine in L. lactis/pNZ-metK, HPLC was performed to analyze the extracts from the strain. S-adenosyl-methionine was identified on the basis of retention times related to standard sample. According to the retention time of standard S-adenosyl-methionine sample, it can be confirmed that S-adenosyl-methionine was synthesized more in L. lactis/pNZ-metK than original L. lactis NZ9000.

Figure. 5 Validation of S-adenosyl-methionine (SAM) by HPLC.

-- Part:BBa_K2856003

Modification of cell wall anchor domain-containing protein (CwaA)

BBa_K2856003 harbors an adhesion-associated protein called cwaA. The cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif.

Figure. 1 Schematic diagram of adhesion factor module.

Usage and Biology

The cwaA gene encodes 923 amino acids with a predicted molecular weight of 93.7 kD. The C terminus of CwaA contains an LPQTDE (LPxTG-like cell wall anchoring) motif belonging to the gram-positive LPxTG anchor superfamily. CwaA possesses five cell wall surface anchor repeat domains. The LPxTG-like motif and three of the five cell wall surface anchor repeat domains. Therefore, CwaA is a cell wall-anchored protein. The specific hit domains of CwaA also included epiglycanin (tandem-repeating region of mucin, pfam05647), OmpC (outer membrane protein, COG3203), PT (the tetrapeptide XPTX repeat, pfam04886) and BF2867_like_N (N-terminal domain found in Bacteroides fragilis Nctc 9343 BF2867 and related proteins, cd13120), probably with a role in cell adhesion

Figure. 2 Enzymatic reaction catalyzed by metK.

Construction and validation of plasmid pNZ-cwaA

Gene cwaA is from genomic DNA of Lactobacillus plantarum NL42 .In order to remove some illegal restriction enzyme sites and add a HIS tag, the gene cwaA was synthesized by Shanghai Generay Biotech (Shanghai, China). The gene cut with restriction enzyme Hind III and NcoI was ligased with plasmid pNZ8148 cut with the same enzyme. Then the ligation product was transferred to E.coli and spread on plates containing 10 mg/L chloramphenicol. Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃, 200 rpm. 1 μl culture were added to the PCR system as template. As shown in Figure. 3, all the picked colonies had the brand of cwaA, illustrating that the plasmid pNZ-cwaA was successfully constructed.

Figure. 3 Validation of plasmid pNZ-cwaA. M represented marker. 1-4 represented three randomly picked colonies.

Validation of self-aggregation of the recombinant L. lactis/pNZ-cwaA

To evaluate whether CwaA was effective for adhesion, we performed self-aggregation assays. The cells were collected and washed twice with o.1M PBS (pH=7.0).Then the cells were resuspended in 4ml PBS buffer with an initial OD600=0.5(A0) and the final OD600(At) of the upper most layer was measured after 4 hour cultivation in 30℃ without shaking.

Self-aggregation (%)=100-(At/A0)X100

Figure. 4 Self-aggregation value of L. lactis NZ9000 and L. lactis/pNZ-cwaA.

Composite parts

Plasmid pNZ-GM

Plasmid pNZ-GM harbors gene gshF and gene metK. Combing the modules in one plasmid to validate the function of simultaneously expression of protein GshF and MetK.

Construction of plasmid pNZ-GM

Gene gshF and metK were expressed in tandem and controlled by the same inducible promoter PnisA. Gibson assembly method was used to join gshF and metK to form pNZ-GM and then transferred to E.coli DH5α. RBS site was added in front of gene metK.

Validation of plasmid pNZ-cwaA

Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃, 200 rpm. 1 μl culture were added to the PCR system as template. The length of the fragment obtained by PCR using the primers for verification was 3494 bp theoretically if plasmid pNZ-GM was constructed successfully. As shown in Figure. 2, all the picked colonies had gene gshF and metK, illustrating that the plasmid pNZ-GM was successfully constructed.

Figure. 1 Validation of plasmid pNZ-GM. M represented marker. 1 to 6 represented randomly picked colonies.

Functional characterization of plasmid pNZ-GM

After we introduced the plasmid pNZ-GM to L. lactis NZ9000, we tested the GSH and SAM production. Compared with wild type L. lactis NZ9000, the engineered strain L.lactis/pNZ-GM produced more GSH and SAM.

Figure. 2 GSH and SAM production of strain L. lactis NZ9000 and L. lactis/pNZ-GM. Asterisk represented none production.

Plasmid pNZ-GMcA

Plasmid pNZ-GMcA harbors gene gshF, gene metK and cwaA. Combing three modules in one plasmid in order to improve the colonization ability of Lactococcus lactis while producing GSH and SAM.

Construction of plasmid pNZ-GMcA

Plasmid pNZ-GM and adhesion module amplified from plasmid pNZ-cwaA were cut by Pst I and Sal I, then were linked with T4 DNA ligase and transferred to E.coli DH5α.

Validation of plasmid pNZ-GMcA

Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃, 200 rpm. 1 μl cultures were added to the PCR system as template. The length of the fragment 1 obtained by PCR for verification was 3760 bp theoretically and fragment 2 was 3079 bp if plasmid pNZ-GM was constructed successfully. As shown in Figure. 1, all the picked colonies contains gene gshF, metK and cwaA, illustrating that the plasmid pNZ-GMcA was successfully constructed.

Figure. 1 Validation of plasmid pNZ-GMcA. M represented marker. gm-1 to gm-5 and cA-1 to cA-5 all represented the same five randomly picked colonies.

Functional characterization of plasmid pNZ-GMcA

After we introduced the plasmid pNZ-GMcA to L. lactis NZ9000, we tested the GSH and SAM production and self-aggregation value to evaluate adhesivity of the strain. As depicted in Figure. 2, compared with wild type L. lactis NZ9000, the engineered strain L.lactis/pNZ-GMcA produced more GSH and SAM and showed better adhesivity.

Figure. 2 GSH and SAM production and self-aggregation value of strain L. lactis NZ9000 and L. lactis/pNZ-GMcA. Asterisk represented none production.