Difference between revisions of "Team:WLC-Milwaukee/Experiments"

Line 51: Line 51:
 
             <div class="col-lg">
 
             <div class="col-lg">
 
                     <h1>Cloning</h1>
 
                     <h1>Cloning</h1>
                     <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit,
+
                     <p>We followed standard procedures for the cloning of our parts, first amplifying our genes of interest by PCR, digesting and ligating our parts into our backbone(s), and transformation via electroporation into electrocompetent lab strain <i>E. coli</i>. Successful transformants underwent initial screening through diagnostic restriction enzyme digests to confirm the presence of our plasmid backbones and appropriate genes. When diagnostic digests showed high potential for a successful clone, samples were sent for sequencing to (in most cases) confirm the presence and accurate sequence of our parts. We ran into numerous issues during cloning that slowed the progression of our lab work and project including poor gene amplification during PCR which was inevitably solved using slightly longer primers and a longer annealing time. Additionally, we had some unexpected initial sequencing data that confounded the situation, however, after additional screening we believe our part sequences to be accurate and complete.</p>
                      sed do eiucol-smod tempor incididunt ut labore et dolore magna aliqua.
+
                      Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
+
                      nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
+
                      <a href="Protocols.html#link1"> Protocol Link 1 </a>
+
                      reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
+
                      <a href="Protocols.html#link2"> Protocol Link 2 </a>
+
                      pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
+
                      <a href="Protocols.html#link3"> Protocol Link 3 </a>
+
                      culpa qui officia deserunt mollit a nim id est laborum.</p>
+
 
             </div>
 
             </div>
  
 
             <div class="col-lg">
 
             <div class="col-lg">
                     <h1>Protein Expression</h1>
+
                     <h1>Protein Expression and Purification</h1>
 
                     <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit,
 
                     <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit,
 
                       sed do eiucol-smod tempor incididunt ut labore et dolore magna aliqua.
 
                       sed do eiucol-smod tempor incididunt ut labore et dolore magna aliqua.

Revision as of 18:25, 17 October 2018

PLACEHOLDER

WLC iGEM 2018 | Wetlab

Wet Lab

Our Wet Lab efforts focused on first designing our parts in such a way as to test new versions of past WLC-iGEM binding proteins for optimization and use in our test kit. Our work then turned to successfully sub-cloning our new parts (BBa_K2589000, BBa_K2589002 ) from the pETail4 plasmid containing the lambda phage genome into both pTrc99a and pSB1C3 along with improving a past part BBa_K2452002 to create the composite part BBa_K2589001. Our final focus in WetLab was to purify the proteins from our new parts using Nickel column purification (as most of our parts contain a His tag element) and then confirming expression or protein presence.

Part Design

Our Wet Lab team and Dr. Werner met early in the year to discuss the full spectrum of possible parts we would attempt to create and submit, and as with many iGEM teams we set our goals a bit too high, hoping to create a series of fusion proteins with which to better analyze our test kit on top of the basic parts needed for our system. We analyzed the sequence of the pTrc99a plasmid and decided to use the trc-promoter BBa_K2042004 for induction of all of our lambda phage tail protein parts with IPTG. Because the part sample for this promoter has not been released, primers had to be designed to input our parts into the pTrc99a backbone and then further clone our parts into pSB1C3 with the trc-promoter from the pTrc99a backbone. The basic parts we designed at the beginning of our project include BBa_K2589000 and BBa_K2589002, and an improved composite part BBa_K2589001 consisting of BBa_K2452002 and BBa_K2042004. Dr. Werner helped us design our primers in a major way ensuring our sequences were accurate and should work as expected. We did run into some problems with low gene amplification during PCR and ended up increasing the size of our original primers by 1bp.

Cloning

We followed standard procedures for the cloning of our parts, first amplifying our genes of interest by PCR, digesting and ligating our parts into our backbone(s), and transformation via electroporation into electrocompetent lab strain E. coli. Successful transformants underwent initial screening through diagnostic restriction enzyme digests to confirm the presence of our plasmid backbones and appropriate genes. When diagnostic digests showed high potential for a successful clone, samples were sent for sequencing to (in most cases) confirm the presence and accurate sequence of our parts. We ran into numerous issues during cloning that slowed the progression of our lab work and project including poor gene amplification during PCR which was inevitably solved using slightly longer primers and a longer annealing time. Additionally, we had some unexpected initial sequencing data that confounded the situation, however, after additional screening we believe our part sequences to be accurate and complete.

Protein Expression and Purification

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiucol-smod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in Protocol Link 4 reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in Protocol Link 5 culpa qui officia deserunt mollit a nim id est laborum.