Difference between revisions of "Team:Vilnius-Lithuania/Design"

Line 192: Line 192:
 
               <p></p>
 
               <p></p>
 
<div class="image-container">
 
<div class="image-container">
               <img src="https://static.igem.org/mediawiki/2018/c/cd/T--Vilnius-Lithuania--THERMO3_switches.jpg"/>
+
               <img src="https://static.igem.org/mediawiki/2018/d/d8/T--Vilnius-Lithuania--Fig1_NEW_thermoswitches.png"/>
 
               <p><strong>Fig. 1</strong> A simplified mechanism of action of RNA thermometers. At lower temperatures the secondary messenger RNA (mRNA) stem-loop masks the ribosome binding site (RBS). Higher temperature induces melting of the hairpin which reveals the RBS to allow ribosome binding and initiation of translation.</p>
 
               <p><strong>Fig. 1</strong> A simplified mechanism of action of RNA thermometers. At lower temperatures the secondary messenger RNA (mRNA) stem-loop masks the ribosome binding site (RBS). Higher temperature induces melting of the hairpin which reveals the RBS to allow ribosome binding and initiation of translation.</p>
 
</div>
 
</div>
Line 240: Line 240:
 
               </p>
 
               </p>
 
               <p>
 
               <p>
                   <img src="https://static.igem.org/mediawiki/2018/3/39/T--Vilnius-Lithuania--THERMO1_no_thermoswiches.jpg"
+
                   <img src="https://static.igem.org/mediawiki/2018/a/af/T--Vilnius-Lithuania--Fig8_NEW_thermoswitches.png"
 
                   <strong>Fig. 8</strong> Associational scheme of thermoswitches’ action in the SynDrop system. Not locking the concomitant translation of our target protein and BamA results in target protein aggregation due to insufficient membrane insertion and  assembling potential of BamA.
 
                   <strong>Fig. 8</strong> Associational scheme of thermoswitches’ action in the SynDrop system. Not locking the concomitant translation of our target protein and BamA results in target protein aggregation due to insufficient membrane insertion and  assembling potential of BamA.
 
               </p>
 
               </p>
 
               <p>
 
               <p>
                   <img src="https://static.igem.org/mediawiki/2018/5/5d/T--Vilnius-Lithuania--THERMO2_plus_thermoswiches.jpg"
+
                   <img src="https://static.igem.org/mediawiki/2018/8/8b/T--Vilnius-Lithuania--Fig9_NEW_thermoswitches.png"
 
                   <strong>Fig. 9</strong> Associational scheme of thermoswitches’ action in the SynDrop system. Locking up translation gives time for proper folding and insertion of BamA and prevents undesirable aggregation of target membrane proteins.
 
                   <strong>Fig. 9</strong> Associational scheme of thermoswitches’ action in the SynDrop system. Locking up translation gives time for proper folding and insertion of BamA and prevents undesirable aggregation of target membrane proteins.
 
               </p>
 
               </p>

Revision as of 22:47, 17 October 2018

Design and Results

Results

Cell-free, synthetic biology systems open new horizons in engineering biomolecular systems which feature complex, cell-like behaviors in the absence of living entities. Having no superior genetic control, user-controllable mechanisms to regulate gene expression are necessary to successfully operate these systems. We have created a small collection of synthetic RNA thermometers that enable temperature-dependent translation of membrane proteins, work well in cells and display great potential to be transferred to any in vitro protein synthesis system.

invert