Difference between revisions of "Team:Vilnius-Lithuania/Design"

Line 72: Line 72:
 
             </p>
 
             </p>
 
             <p>
 
             <p>
 +
                    <div class="image-container">
 +
                    <img src="https://static.igem.org/mediawiki/2018/4/42/T--Vilnius-Lithuania--Fig1_Ribosomes.png"/>
 
                     <strong>Fig. 1</strong> Principle of ribosome attachment to the liposome membrane. The ribosome exit tunnel is localized near the membrane, resulting in transmembrane domains of newly synthesized peptides interacting with the membrane, reducing aggregation
 
                     <strong>Fig. 1</strong> Principle of ribosome attachment to the liposome membrane. The ribosome exit tunnel is localized near the membrane, resulting in transmembrane domains of newly synthesized peptides interacting with the membrane, reducing aggregation
 
             </p>
 
             </p>
 +
        </div>
 
             <p></p>
 
             <p></p>
 
             <h1>Results</h1>
 
             <h1>Results</h1>
Line 92: Line 95:
 
             </p>
 
             </p>
 
             <p>
 
             <p>
 +
                    <img src="https://static.igem.org/mediawiki/2018/f/fc/T--Vilnius-Lithuania--Fig2_Ribosomes.png"/>
 
                   <strong>Fig. 2</strong> Scheme of the genome modification process:
 
                   <strong>Fig. 2</strong> Scheme of the genome modification process:
 
                   <ol>
 
                   <ol>
Line 115: Line 119:
 
             </p>
 
             </p>
 
             <p>
 
             <p>
 +
                    <img src="https://static.igem.org/mediawiki/2018/a/a9/T--Vilnius-Lithuania--Fig3_Ribosomes.png"/>
 
                     <strong>Fig.3</strong> Example of a constructed donor sequence. The sequence of the selected tag is present in primer used for the PCR of the homology arm that encompasses the target subunit. As a result, the tag sequence is fused to the ribosomal subunit gene.
 
                     <strong>Fig.3</strong> Example of a constructed donor sequence. The sequence of the selected tag is present in primer used for the PCR of the homology arm that encompasses the target subunit. As a result, the tag sequence is fused to the ribosomal subunit gene.
 
             </p>
 
             </p>
 
             <p>
 
             <p>
 +
                    <img src="https://static.igem.org/mediawiki/2018/d/d5/T--Vilnius-Lithuania--Fig4_Ribosomes.png"/>
 
                     <strong>Fig. 4</strong> PCR of homology arms, and antibiotic resistance genes
 
                     <strong>Fig. 4</strong> PCR of homology arms, and antibiotic resistance genes
 
             </p>
 
             </p>
 
             <p>
 
             <p>
 +
                    <img src="https://static.igem.org/mediawiki/2018/8/86/T--Vilnius-Lithuania--Fig5_Ribosomes.png"/>
 
                     <strong>Fig. 5</strong> Constructed donor DNA sequences. The L29 donor DNA was not further revisited due to time constraints
 
                     <strong>Fig. 5</strong> Constructed donor DNA sequences. The L29 donor DNA was not further revisited due to time constraints
 
             </p>
 
             </p>

Revision as of 22:57, 17 October 2018

Design and Results

Results

Cell-free, synthetic biology systems open new horizons in engineering biomolecular systems which feature complex, cell-like behaviors in the absence of living entities. Having no superior genetic control, user-controllable mechanisms to regulate gene expression are necessary to successfully operate these systems. We have created a small collection of synthetic RNA thermometers that enable temperature-dependent translation of membrane proteins, work well in cells and display great potential to be transferred to any in vitro protein synthesis system.

invert