Difference between revisions of "Team:Vilnius-Lithuania/Design"

Line 95: Line 95:
 
             </p>
 
             </p>
 
             <p>
 
             <p>
 +
                    <div class="image-container">
 
                     <img src="https://static.igem.org/mediawiki/2018/f/fc/T--Vilnius-Lithuania--Fig2_Ribosomes.png"/>
 
                     <img src="https://static.igem.org/mediawiki/2018/f/fc/T--Vilnius-Lithuania--Fig2_Ribosomes.png"/>
                   <strong>Fig. 2</strong> Scheme of the genome modification process:
+
                   <strong>Fig. 2 </strong> Scheme of the genome modification process:
 
                   <ol>
 
                   <ol>
 
                       <li>
 
                       <li>
Line 113: Line 114:
 
             </p>
 
             </p>
 
             <p>
 
             <p>
 +
                </div>
 
                     For multi-gene editing, we chose to supply the donor sequence as a linear DNA strand (PCR product). Due to financial reasons, to construct the donor DNA sequence we performed separate PCRs of the homology arms (from the E. coli genome), selection marker (antibiotic resistance genes from available plasmids) (Fig. 4). The oligomers had the his and strep tag sequences incorporated into them alongside 2 different restriction sites. In case the distance between the ribosomes and the membrane wall was too small for our system to be efficient, we also designed alternative variants the would feature the his-tags connected via a highly flexible two-glycine-four-serine linker (GGSSSS), which is a highly popular linker for artificial fusion proteins.
 
                     For multi-gene editing, we chose to supply the donor sequence as a linear DNA strand (PCR product). Due to financial reasons, to construct the donor DNA sequence we performed separate PCRs of the homology arms (from the E. coli genome), selection marker (antibiotic resistance genes from available plasmids) (Fig. 4). The oligomers had the his and strep tag sequences incorporated into them alongside 2 different restriction sites. In case the distance between the ribosomes and the membrane wall was too small for our system to be efficient, we also designed alternative variants the would feature the his-tags connected via a highly flexible two-glycine-four-serine linker (GGSSSS), which is a highly popular linker for artificial fusion proteins.
 
             </p>
 
             </p>
Line 119: Line 121:
 
             </p>
 
             </p>
 
             <p>
 
             <p>
 +
                    <div class="image-container">
 
                     <img src="https://static.igem.org/mediawiki/2018/a/a9/T--Vilnius-Lithuania--Fig3_Ribosomes.png"/>
 
                     <img src="https://static.igem.org/mediawiki/2018/a/a9/T--Vilnius-Lithuania--Fig3_Ribosomes.png"/>
                     <strong>Fig.3</strong> Example of a constructed donor sequence. The sequence of the selected tag is present in primer used for the PCR of the homology arm that encompasses the target subunit. As a result, the tag sequence is fused to the ribosomal subunit gene.
+
                     <strong>Fig.3 </strong> Example of a constructed donor sequence. The sequence of the selected tag is present in primer used for the PCR of the homology arm that encompasses the target subunit. As a result, the tag sequence is fused to the ribosomal subunit gene.
 
             </p>
 
             </p>
 +
        </div>
 
             <p>
 
             <p>
 +
               
 +
                    <div class="image-container">
 
                     <img src="https://static.igem.org/mediawiki/2018/d/d5/T--Vilnius-Lithuania--Fig4_Ribosomes.png"/>
 
                     <img src="https://static.igem.org/mediawiki/2018/d/d5/T--Vilnius-Lithuania--Fig4_Ribosomes.png"/>
                     <strong>Fig. 4</strong> PCR of homology arms, and antibiotic resistance genes
+
                     <strong>Fig. 4 </strong> PCR of homology arms, and antibiotic resistance genes
 
             </p>
 
             </p>
 +
        </div>
 
             <p>
 
             <p>
 +
                    <div class="image-container">
 
                     <img src="https://static.igem.org/mediawiki/2018/8/86/T--Vilnius-Lithuania--Fig5_Ribosomes.png"/>
 
                     <img src="https://static.igem.org/mediawiki/2018/8/86/T--Vilnius-Lithuania--Fig5_Ribosomes.png"/>
                     <strong>Fig. 5</strong> Constructed donor DNA sequences. The L29 donor DNA was not further revisited due to time constraints
+
                     <strong>Fig. 5 </strong> Constructed donor DNA sequences. The L29 donor DNA was not further revisited due to time constraints
 
             </p>
 
             </p>
 +
        </div>
 
             <p>
 
             <p>
 
                     The genome modifications were then carried according to our protocol "kristina"(link). Although cPCR gave us mixed results, we could not verify any colonies that afterwards grew on our selected marker antibiotics, and thus could not continue our experiments with them. It appears most likely that the genome modifications were not entirely successful, due to the somewhat unstable nature of the ligated linear DNA used for the donor sequence.
 
                     The genome modifications were then carried according to our protocol "kristina"(link). Although cPCR gave us mixed results, we could not verify any colonies that afterwards grew on our selected marker antibiotics, and thus could not continue our experiments with them. It appears most likely that the genome modifications were not entirely successful, due to the somewhat unstable nature of the ligated linear DNA used for the donor sequence.

Revision as of 23:01, 17 October 2018

Design and Results

Results

Cell-free, synthetic biology systems open new horizons in engineering biomolecular systems which feature complex, cell-like behaviors in the absence of living entities. Having no superior genetic control, user-controllable mechanisms to regulate gene expression are necessary to successfully operate these systems. We have created a small collection of synthetic RNA thermometers that enable temperature-dependent translation of membrane proteins, work well in cells and display great potential to be transferred to any in vitro protein synthesis system.

invert