Difference between revisions of "Team:Kyoto/Design"

Line 121: Line 121:
 
</ul>
 
</ul>
 
</div>
 
</div>
<h5 id="Overview">1) Overview</h5>
+
<h5 id="Overview">1) Preparation of salt resistance enhancing plasmid in budding yeast
 +
</h5>
  
  
<p>高い塩濃度を含む液体から塩を除去する酵母を作るために、われわれは3つのfeatureを酵母に付与することにした。まず、塩濃度の高い環境でも酵母が過剰なダメージを受けないために、耐塩性生物の持つシステムをわれわれの酵母に移植すること。次に、酵母が本来もっているNa+排出システムを破壊して、流入したNa+が外液に戻っていかなくすること。さらに、酵母が細胞質の高いNa+濃度によりダメージを受けないように、細胞内のNa+を積極的に液胞内部へ運ぶポンプを発現していること。この3つを用意することで、細胞内により多くのNa+を蓄積する酵母を作成することを目指した。
+
<p>When Na+ ions are collected in S. cerevisiae cells, high concentration of Na+ might damage the cells. We have to develop tools which protect S. cerevisiae cells from salt damage. We used two devices here, “compatible solute synthesis” and “chaperon-like protein”.
  
さらにわれわれのデバイスの使用用途を拡張するために、biocontainmentのためのハンドルを酵母表面に提示させ、酵母をアグリゲーションさせて回収するシステムを用意した。これら2つを組み合わせることで、より広い環境で脱塩システムを稼働させることができるようになる。</p>
+
Did you know that a certain group of yeast is working hard in high salt condition, to provide great contribution to tables in the world? They are, Zygosaccharomyces rouxii, soy sauce-brewing yeast. They produce glycerol as compatible solute to counteract osmotic stress. We cloned from Z. rouxii ZrGPD1 (glycerol-3-phosphate dehydrogenase) and ZrFPS1 (glycerol transporter), both of which are important for the glycdrol metabolism in Z. rouxii. We tried to increase salt tolerance of our Swallowmyces cerevisiae by these two genes.
  
 +
Another gene we focuced on is mangrin, a small peptide from mangrove, salt resistant plants. It is a chaperon-like protein and believed that it repairs salt damaged proteins. We decided to test this gene to increase yeast salt tolerance.
  
  <h5 id="塩吸収酵母"> 2)塩吸収酵母</h5>
+
</p>
<br><p>私たちは、酵母の細胞膜上、そして液胞膜上のを遺伝子工学的に改変することによりNa+取り込み系の実現を試みました。次のセクションから詳しく記述します。</p>
+
  
<h5 id="Modification of Transporters on Cellular Membrane">2-1) Modification of Transporters on Cellular Membrane</h5>
 
<br><p>細胞膜上のNa+輸送に関わるトランスポーターをノックアウトしたり導入したりすることで、細胞膜のNa+透過性を上げ、速度論的にNa+取り込みをimproveします。
 
  
<br>
+
  <h5 id="塩吸収酵母"> 2)P reparation of yeast to incorporate Na+
・At first, 酵母のネイティブのNa+排出トランスポーターをノックアウトしてNa+の漏出を阻害します。Na+を外部に流出するトランスポーターとして、ENA1,ENA2, ENA5および,NHA1に注目し、以下のノックアウト株の作成をデザインしました。 NHA1Δ、ENA1Δ、NHA1ΔENA1Δ、ENA1,2,5ΔNHA1Δ
+
</h5>
 +
<br><p>S. cerevisiae has Na+ transporter to remove Na+ from their cytoplasm. The main transporters includes NHA1, ENA1, ENA2, ENA4. When all of these genes were knocked out, the deletion strain shows hypersensitivity against NaCl. To produce yeast strain that uptake more Na+, using homologous recombination system, we knocked-out all of the above genes.
  
ENA1, ENA2, and ENA5 array in tandem are nearly identical P-Type ATPases localized on cellular membrane. ENA1 is most characterized and is thought to code a primary membrane Na+-ATPase exporter in S. cerevisiae and contribute to the detoxification of Na+ ion remarkably, so ENA1欠損株は塩感受性を示す事がわかっている。 ゲノムデータベースによると私たちが用いるBY4741、YKO親株がコードするENA1,2,5の遺伝子座は、DBY746/747 and W303.1A/BのENA1-4にあたり、 it is reported that disruption of ENA1-4 genes of S. cerevisiae does not completely eliminate Na+ efflux. [1][2]
+
Furthermore, we found a protein which is involved in influx of Na+ in plants. It is AtHKT1. By overexpressing AtHKT1, we expect that more Na+ will be collected by the yeast. Another candidate we found is McHKT2. McHKT2 is a Na+ transporter of Mesembryanthemum crystallinum. M. crystallinum, “ice-plant”, is a salt tolerance plant. It is salty. It is reported that McHKT2 is involved the salt compartimentalization in this plant.
NHA1 is Na+/H+ antiporter and mediates Na+ efflux through plasma membrane. Its deletion is reported to show salt sensitivity. [3]</p>
+
 
 +
High concentration Na+ in cytoplasm might damage the cells. To overcome this problem, we will use the salt plants’ salt tolerance system, where Na+ in cytoplasm is sequestered into vacuole by Na+/H+ exchanger. These factors includes Na+/H+ antiporter AtNHXS1 from A. thaliana, SseNHX1, a paralog of AtNHXS1 from salt plant, and a vacuolar protein AVP1 which inclease H+ concentration in vacuole.
 +
 
 +
By enhanceing Na+ influx, by preventing Na+ efflux, and by redirecting cytoplasmic Na+ into vacuoles, we aim to create yeast strain which accumulate more Na+.  
 +
</p>
 +
 
 +
<h5 id="Modification of Transporters on Cellular Membrane">3) Reduce the concentration of NaCl in the medium
 +
</h5>
 +
<br><p>The goal of our Swallowmyces cerevisiae is not the uptake of Na+. We aim to reduce salt concentration of the water by this device. By combining experimental data and mathematical modeling, we try to optimize our system, to achieve maximum desalination. What will happen when we mix our best strain into high salt-containing media? 
 +
</p>
 +
 
 +
<h5 id="Modification of Transporters on Cellular Membrane">4) Development of aggregation system
 +
</h5>
 +
<p>Even if our device efficiently reduce NaCl concentration in the media, we will never stop our research and development. We try to construct robust safety system for the biocontainment of our genetically modified yeast cells. For this purpose, we selected two gene, SdrG and FgBeta.
 +
 
 +
SdrG is a surface component of Staphylococcus epidermidis. It is known that SdrG tightly binds to a small N-terminus domain of human fibrinogen beta. Reportedly, the binding between SdrG and fibrinogen beta is as strong as a covalent bond. If we express these proteins on the surface of yeast separately, we might see strong coupling of two yeast cells mediated by this interaction.
 +
In such a case, as one cell will display multiple handles, we might see a big ball of conjugated yeast cells, when we mix the two “hundle-desplaying” strains.</p>
  
 
<center><img src="https://static.igem.org/mediawiki/2018/0/08/T--Kyoto--aha5.png" width="40%"></center>
 
<center><img src="https://static.igem.org/mediawiki/2018/0/08/T--Kyoto--aha5.png" width="40%"></center>
Line 152: Line 168:
 
<center><img src="https://static.igem.org/mediawiki/2018/e/e7/T--Kyoto--aha6.png" width="40%"></center>
 
<center><img src="https://static.igem.org/mediawiki/2018/e/e7/T--Kyoto--aha6.png" width="40%"></center>
  
</P>
+
<p>
 +
SdrGはStaphylococcus epidermidisのsurface componentです。このタンパク質はヒトのfibrinogen beta由来の25アミノ酸という短い配列に非常に強く結合すること、これが生体内へのバイオフィルムの固着に関与していること、などが示されています。これらのタンパク質を別々の酵母でsurface displayにより発現させれば、強い結合力を利用して2細胞の強い結束が実現できるのではないでしょうか? 一つの酵母が複数のハンドルを発現するとすれば、二種類の酵母をブレンドするだけで、酵母は全体で一つの大きな細胞塊になってしまうのでは? 
  
 
+
さて、上の1-4まで、順番にどうなったか、見てみましょう。 → (リンク)
<h5 id="Modification of Transporters on Vacuolar Membrane">2-2) Modification of Transporters on Vacuolar Membrane</h5>
+
<p>Na+は様々な酵素の活性を阻害するので(参考)、液胞に隔離させるために、AntiporterNHX1とH+-PpaseAVP1を導入することでNa+取り込み機構を構築します。
+
NHX1として、シロイヌナズナ由来のAtNHX1をDNAシャッフリングにより活性を高めたAtNHXS1と、2種類の塩生植物のNHX1をDNAシャッフリングしたSseNHX1の2つがあり、どちらがよりよいパフォーマンスをするか選別します。
+
AtNHXS1
+
<center><img src="https://static.igem.org/mediawiki/2018/5/51/T--Kyoto--aha7.png" width="40%"></center>
+
 
+
</p>
+
 
+
 
+
<h5 id="Halotorelance of yeast">3)Halotorelance of Yeast</h5>
+
<p class="honbun">We tried to enhance halotolerance of yeast in order to make biological devices work even under high salt concentration. For this, we focused on 3 genes, Mangrin, ZrGPD1 and ZrFPS1. Mangrin is derived from a halophyte plant, Mangrove(<i>Bruguiera sexangula</i>), and encodes a shaperon like protein which is already confirmed to express in yeast. It helps proteins exist stably under high salt concentration. A paper has showed that only 71 amino acids of all the sequence is requied for the function, so we used the functional domain.[1]<br>ZrGPD1 and ZrFPS1 is derived from <i>Zygosaccharomyces rouxii</i>. In Japan, it's very popular because used for create soy source. ZrGPD1 encodes the glycerol-3-phosphate dehydrogenase(参考) and related to glycerol synthesis. ZrFPS1 encodes a putative glycerol transporter and inhibit its efflux. Glycerol works as a conpatible solute, so they are expected to work for increase the osmotic torelance and salt one.[2] By introducing these proteins, We tried to expand the range yeast can be addapted. その導入により酵母の適応塩濃度範囲をexpandします。
+
</p>
+
<center><img src="https://static.igem.org/mediawiki/2018/3/30/T--Kyoto--aha9.png" width="40%"></center>
+
 
+
<center><p>Figure1:酵母の耐塩性に貢献する3つのタンパク質を表した図。(聞くならmangrin→續さん、Zr:島添君)</center>
+
 
+
  <h5 id="凝集酵母"> 4)凝集酵母</h5>
+
<p class="honbun">私たちの酵母によって塩を回収したあと、酵母を回収しやすくするためそしてバイオセーフティーのためにそれらを凝集させる系の確立を目指しました。そのためにsurface displayを介してSdrG-Fgβ結合という共有結合に匹敵するほど強力なタンパク質間結合の利用に着目しました。SdrG is SD-repeat protein from </i>Staphylococcus epidermidis</i>, and it targets a short peptide sequence of human fibrinogen. それらは下の図のようにin a screw mannweで、FgβがSdrGのN2 domainとN3 domainの間のbinding pocketに入りhydrogen bondを形成して、共有結合なみの結合を形成することが報告されている。Moreover, FgβF3(it contains one extra Phenylalanine) is reported to form a more strong conjugation to SdrG compared to WT Fgβ. So for this system, we decided to use SdrG and FgβF3 connection.
+
<center><img src="https://static.igem.org/mediawiki/2018/b/bf/T--Kyoto--SdrG-FgB.png" width="50%"></center>
+
In order to display the proteins on the cell surface, we used sed1 anchoringドメイン which is a kind of GPI anchor and used for yeast surface display. A paper has reported sed1 secretion signal sequence have a good efficiency of surface display. Therefore we designed plasmids by which yeast can display SdrG N2_N3 domain/FgβF3 through the anchoring protein.</p>
+
(表層提示のイラスト)
+
  
  
 +
</P>
 
<div class="reference">  
 
<div class="reference">  
 
   <h6>Reference</h6>
 
   <h6>Reference</h6>

Revision as of 23:34, 17 October 2018

Team:Kyoto/Design - 2018.igem.org

1) Preparation of salt resistance enhancing plasmid in budding yeast

When Na+ ions are collected in S. cerevisiae cells, high concentration of Na+ might damage the cells. We have to develop tools which protect S. cerevisiae cells from salt damage. We used two devices here, “compatible solute synthesis” and “chaperon-like protein”. Did you know that a certain group of yeast is working hard in high salt condition, to provide great contribution to tables in the world? They are, Zygosaccharomyces rouxii, soy sauce-brewing yeast. They produce glycerol as compatible solute to counteract osmotic stress. We cloned from Z. rouxii ZrGPD1 (glycerol-3-phosphate dehydrogenase) and ZrFPS1 (glycerol transporter), both of which are important for the glycdrol metabolism in Z. rouxii. We tried to increase salt tolerance of our Swallowmyces cerevisiae by these two genes. Another gene we focuced on is mangrin, a small peptide from mangrove, salt resistant plants. It is a chaperon-like protein and believed that it repairs salt damaged proteins. We decided to test this gene to increase yeast salt tolerance.

2)P reparation of yeast to incorporate Na+

S. cerevisiae has Na+ transporter to remove Na+ from their cytoplasm. The main transporters includes NHA1, ENA1, ENA2, ENA4. When all of these genes were knocked out, the deletion strain shows hypersensitivity against NaCl. To produce yeast strain that uptake more Na+, using homologous recombination system, we knocked-out all of the above genes. Furthermore, we found a protein which is involved in influx of Na+ in plants. It is AtHKT1. By overexpressing AtHKT1, we expect that more Na+ will be collected by the yeast. Another candidate we found is McHKT2. McHKT2 is a Na+ transporter of Mesembryanthemum crystallinum. M. crystallinum, “ice-plant”, is a salt tolerance plant. It is salty. It is reported that McHKT2 is involved the salt compartimentalization in this plant. High concentration Na+ in cytoplasm might damage the cells. To overcome this problem, we will use the salt plants’ salt tolerance system, where Na+ in cytoplasm is sequestered into vacuole by Na+/H+ exchanger. These factors includes Na+/H+ antiporter AtNHXS1 from A. thaliana, SseNHX1, a paralog of AtNHXS1 from salt plant, and a vacuolar protein AVP1 which inclease H+ concentration in vacuole. By enhanceing Na+ influx, by preventing Na+ efflux, and by redirecting cytoplasmic Na+ into vacuoles, we aim to create yeast strain which accumulate more Na+.

3) Reduce the concentration of NaCl in the medium

The goal of our Swallowmyces cerevisiae is not the uptake of Na+. We aim to reduce salt concentration of the water by this device. By combining experimental data and mathematical modeling, we try to optimize our system, to achieve maximum desalination. What will happen when we mix our best strain into high salt-containing media?

4) Development of aggregation system

Even if our device efficiently reduce NaCl concentration in the media, we will never stop our research and development. We try to construct robust safety system for the biocontainment of our genetically modified yeast cells. For this purpose, we selected two gene, SdrG and FgBeta. SdrG is a surface component of Staphylococcus epidermidis. It is known that SdrG tightly binds to a small N-terminus domain of human fibrinogen beta. Reportedly, the binding between SdrG and fibrinogen beta is as strong as a covalent bond. If we express these proteins on the surface of yeast separately, we might see strong coupling of two yeast cells mediated by this interaction. In such a case, as one cell will display multiple handles, we might see a big ball of conjugated yeast cells, when we mix the two “hundle-desplaying” strains.


・次に、Na+を効率よく内部に取り込むトランスポーターを取り入れることで、Na+をためこませます。そういったトランスポーターとして、シロイヌナズナ由来のAtHKT1,アイスプラント由来のMcHKT2に注目しました。どちらがよりNa+取り込みにおいてパフォーマンスがいいか比較します。 HKT family proteins are high K+ affinity transporters, and AtHKT1 is expressed in xylem of Arabidopsis thaliana. HKT1 from wheatはK+を輸送するが、AtHKT1はそれとは違ってK+の輸送活性はなく、それよりも高いNa+輸送活性を示すことが分かっている。S. cerevisiaeで発現させたとき塩濃度下で生育が阻害されることが確認されており、Na+のため込みに貢献すると考えられる。[4][5] McHK2 is orthologs of AtHKT1 and from Mesembryanthemum crystallinum (ice plant) and thought to be related to cellular Na+ uptake. M.crystallinumはとても強い耐塩性をもっており、McHKT2 has several unique sequence compared to HKT1 ,so it may work better than AtHKT1.[6] (担当、童と仲里さん) (McHKT2はコンストできなかった、と正直にリザルトで書こうと思う)

SdrGはStaphylococcus epidermidisのsurface componentです。このタンパク質はヒトのfibrinogen beta由来の25アミノ酸という短い配列に非常に強く結合すること、これが生体内へのバイオフィルムの固着に関与していること、などが示されています。これらのタンパク質を別々の酵母でsurface displayにより発現させれば、強い結合力を利用して2細胞の強い結束が実現できるのではないでしょうか? 一つの酵母が複数のハンドルを発現するとすれば、二種類の酵母をブレンドするだけで、酵母は全体で一つの大きな細胞塊になってしまうのでは?  さて、上の1-4まで、順番にどうなったか、見てみましょう。 → (リンク)

Reference
  • [1] R. Haro, B. Garciadeblas, A. Rodriguez-Navarro (1991) A novel P-type ATPase from yeast involved in sodium transport, FEBS Letters Vol.291 Issue2 189-191
  • [2] Jos6 A. Miirquez, Ramdn Serrano (1996) Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast, FEBS Letters Vol.382 Issue1-2 89-92
  • [1] A. Yamada, T. Saitoh, T. Mimura et al. (2002) Expression of Mangrove Allene Oxide Cyclase Enhances Salt Tolerance in Escherichia coli, Yeast, and Tobacco Cells, Plant and cell physiology 903-910
  • [2] Hou,Lihua Wang,Meng Wang,Cong Wang,Chunling Wang,Haiyong (2013) Analysis of salt-tolerance genes in zygosaccharomyces rouxii, Applied Biochemistry and Biotechnoloogy 1417-1425
  • [4] A. Y. Ryss, O. A. Kulinich, and J. R. Sutherland, “Pine wilt disease: a short review of worldwide research,” For. Stud. China, vol. 13, no. 2, pp. 132–138, Jun. 2011.
  • [5] Y. Mamiya, “History of Pine Wilt Disease in Japan 1,” J. Nematol., vol. 20, no. 2, pp. 219–226, 1988.
  • [6] Forestry Agency, “The present state of damage of pine-wood nematodes,” 2016. [Online]. Available: http://www.rinya.maff.go.jp/j/hogo/higai/attach/pdf/matukui-1.pdf. [Accessed: 21-Oct-2017].
  • [7] D. N. Proença, G. Grass, and P. V Morais, “Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode.,” Microbiologyopen, vol. 6, no. 2, Apr. 2017.
  • [8] Kyoto Association for the Promotion of Traditional Culture of forest, “Danger of Kyoto's three representative mountains,” 2007. [Online]. Available: http://www.kyoto-dentoubunkanomori.jp/topics/img/brochure.pdf. [Accessed: 21-Oct-2017].
  • [9] T. Kiyohara and Y. Tokushige, “Inoculation Experiments of a Nematode, Bursaphelenchus sp., onto Pine Trees,” J. JAPANESE For. Soc., 1971.
  • [10]C. Vicente, M. Espada, P. Vieira, and M. Mota, “Pine Wilt Disease: a threat to European forestry,” Eur J Plant Pathol, vol. 133, pp. 89–99, 2012.
  • [11]Rejendra Singh and Swastik Phulera, “Plant Parasitic Nematodes: The Hidden Enemies of Farmers,” Reserch gate, 2015.
  • [12]K. syou Kuroda Keiko, “Lisk of water outage and withering by trunk injection against pine-wilt disease,” 2016.
  • [13]A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, Feb. 1998.