Bioluminati (Talk | contribs) |
Bioluminati (Talk | contribs) |
||
Line 121: | Line 121: | ||
<p class=MsoNormal align=center style='text-align:center'><span | <p class=MsoNormal align=center style='text-align:center'><span | ||
− | style='font-size: | + | style='font-size:18.0pt;line-height:107%;color:#1F4E79'> </span></p> |
− | <p class=MsoNormal>Overview </p> | + | <p class=MsoNormal><span style='font-size:20.0pt;line-height:107%'>Overview </span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Mathematical | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Mathematical | ||
Line 163: | Line 163: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
− | width=580 height=373 id="Picture 9" src=" | + | width=580 height=373 id="Picture 9" src="Modelling444_files/image001.jpg" |
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44177337_161118344832834_5155785162818060288_n.png?_nc_cat=110&oh=9e7779a555a3f3b881a5adfaa566230f&oe=5C581588"></span></p> | alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44177337_161118344832834_5155785162818060288_n.png?_nc_cat=110&oh=9e7779a555a3f3b881a5adfaa566230f&oe=5C581588"></span></p> | ||
Line 189: | Line 189: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
− | width=372 height=141 id="Picture 5" src=" | + | width=372 height=141 id="Picture 5" src="Modelling444_files/image002.png"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | ||
Line 199: | Line 199: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
− | width=387 height=108 id="Picture 6" src=" | + | width=387 height=108 id="Picture 6" src="Modelling444_files/image003.png"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | ||
Line 239: | Line 239: | ||
style='font-size:16.0pt;line-height:107%;color:windowtext;text-decoration:none'><img | style='font-size:16.0pt;line-height:107%;color:windowtext;text-decoration:none'><img | ||
border=0 width=479 height=70 id="Picture 4" | border=0 width=479 height=70 id="Picture 4" | ||
− | src=" | + | src="Modelling444_files/image004.png" |
alt="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"></span></a></p> | alt="https://static.igem.org/mediawiki/2017/3/31/Secretion.png"></span></a></p> | ||
Line 277: | Line 277: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=602 height=317 id="Picture 8" | border=0 width=602 height=317 id="Picture 8" | ||
− | src=" | + | src="Modelling444_files/image005.png" |
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44185937_2064200740556003_6694159164534423552_n.png?_nc_cat=105&oh=040a1b04709ea79fa27d8959210921b6&oe=5C482425"></span></p> | alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44185937_2064200740556003_6694159164534423552_n.png?_nc_cat=105&oh=040a1b04709ea79fa27d8959210921b6&oe=5C482425"></span></p> | ||
Line 285: | Line 285: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=560 height=363 id="Picture 2" | border=0 width=560 height=363 id="Picture 2" | ||
− | src=" | + | src="Modelling444_files/image006.png" |
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44351672_551274411976028_2657043464260157440_n.png?_nc_cat=102&oh=ebd37b04550aef2d5e8d2f15364d230b&oe=5C50AC06"></span></p> | alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44351672_551274411976028_2657043464260157440_n.png?_nc_cat=102&oh=ebd37b04550aef2d5e8d2f15364d230b&oe=5C50AC06"></span></p> | ||
Line 293: | Line 293: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=560 height=374 id="Picture 7" | border=0 width=560 height=374 id="Picture 7" | ||
− | src=" | + | src="Modelling444_files/image007.png" |
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44203308_1781628528626872_7513042899114655744_n.png?_nc_cat=111&oh=9400d852e101215b021771e1a18d90f4&oe=5C3F00B1"></span></p> | alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44203308_1781628528626872_7513042899114655744_n.png?_nc_cat=111&oh=9400d852e101215b021771e1a18d90f4&oe=5C3F00B1"></span></p> | ||
Line 314: | Line 314: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=252 height=80 id="Picture 1" | border=0 width=252 height=80 id="Picture 1" | ||
− | src=" | + | src="Modelling444_files/image008.jpg"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span><span | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span><span | ||
style='font-size:16.0pt;line-height:107%'><img border=0 width=178 height=93 | style='font-size:16.0pt;line-height:107%'><img border=0 width=178 height=93 | ||
− | id="Picture 10" src=" | + | id="Picture 10" src="Modelling444_files/image009.jpg"> </span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Here, <em><span | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Here, <em><span | ||
Line 336: | Line 336: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=511 height=59 id="Picture 11" | border=0 width=511 height=59 id="Picture 11" | ||
− | src=" | + | src="Modelling444_files/image010.jpg"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Here k1 is | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Here k1 is | ||
Line 349: | Line 349: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=254 height=145 id="Picture 13" | border=0 width=254 height=145 id="Picture 13" | ||
− | src=" | + | src="Modelling444_files/image011.png"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>We assumed a | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>We assumed a | ||
Line 366: | Line 366: | ||
<p class=MsoNormal><img width=273 height=339 | <p class=MsoNormal><img width=273 height=339 | ||
− | src=" | + | src="Modelling444_files/image012.jpg" align=left hspace=12 |
alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44236260_489616118186439_8807087846427983872_n.png?_nc_cat=105&oh=12547d5feeea7af7a9a5ca9f30244400&oe=5C52B499"></p> | alt="https://scontent-bom1-1.xx.fbcdn.net/v/t1.15752-9/44236260_489616118186439_8807087846427983872_n.png?_nc_cat=105&oh=12547d5feeea7af7a9a5ca9f30244400&oe=5C52B499"></p> | ||
Line 406: | Line 406: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=672 height=66 id="Picture 25" | border=0 width=672 height=66 id="Picture 25" | ||
− | src=" | + | src="Modelling444_files/image013.jpg"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>where: <br> | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>where: <br> | ||
Line 448: | Line 448: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> | ||
</span><span style='font-size:16.0pt;line-height:107%'><img border=0 width=622 | </span><span style='font-size:16.0pt;line-height:107%'><img border=0 width=622 | ||
− | height=76 id="Picture 26" src=" | + | height=76 id="Picture 26" src="Modelling444_files/image014.jpg"></span><span |
style='font-size:16.0pt;line-height:107%'> </span></p> | style='font-size:16.0pt;line-height:107%'> </span></p> | ||
− | <p class=MsoNormal><img width=81 height=43 src=" | + | <p class=MsoNormal><img width=81 height=43 src="Modelling444_files/image015.jpg" |
align=left hspace=12><span style='font-size:16.0pt;line-height:107%'>where: <br> | align=left hspace=12><span style='font-size:16.0pt;line-height:107%'>where: <br> | ||
<br> | <br> | ||
Line 503: | Line 503: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=600 height=75 id="Picture 27" | border=0 width=600 height=75 id="Picture 27" | ||
− | src=" | + | src="Modelling444_files/image016.png"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%;font-family: | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%;font-family: | ||
Line 517: | Line 517: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=253 height=66 id="Picture 20" | border=0 width=253 height=66 id="Picture 20" | ||
− | src=" | + | src="Modelling444_files/image017.png"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>In the | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>In the | ||
Line 540: | Line 540: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=602 height=63 id="Picture 28" | border=0 width=602 height=63 id="Picture 28" | ||
− | src=" | + | src="Modelling444_files/image018.jpg"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Assuming every | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>Assuming every | ||
Line 549: | Line 549: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=602 height=65 id="Picture 29" | border=0 width=602 height=65 id="Picture 29" | ||
− | src=" | + | src="Modelling444_files/image019.jpg"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>where </span><span | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>where </span><span | ||
Line 577: | Line 577: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=595 height=49 id="Picture 39" | border=0 width=595 height=49 id="Picture 39" | ||
− | src=" | + | src="Modelling444_files/image020.jpg"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | ||
Line 583: | Line 583: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=601 height=70 id="Picture 30" | border=0 width=601 height=70 id="Picture 30" | ||
− | src=" | + | src="Modelling444_files/image021.jpg"></span></p> |
<p class=MsoNormal><b><span style='font-size:16.0pt;line-height:107%'>2. | <p class=MsoNormal><b><span style='font-size:16.0pt;line-height:107%'>2. | ||
Line 613: | Line 613: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=414 height=87 id="Picture 35" | border=0 width=414 height=87 id="Picture 35" | ||
− | src=" | + | src="Modelling444_files/image022.png"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | ||
Line 619: | Line 619: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=602 height=226 id="Picture 32" | border=0 width=602 height=226 id="Picture 32" | ||
− | src=" | + | src="Modelling444_files/image023.jpg"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | ||
Line 676: | Line 676: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=602 height=125 id="Picture 33" | border=0 width=602 height=125 id="Picture 33" | ||
− | src=" | + | src="Modelling444_files/image024.jpg"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>So the two parameters | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>So the two parameters | ||
Line 726: | Line 726: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=602 height=259 id="Picture 34" | border=0 width=602 height=259 id="Picture 34" | ||
− | src=" | + | src="Modelling444_files/image025.jpg"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | ||
Line 737: | Line 737: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=414 height=87 id="Picture 36" | border=0 width=414 height=87 id="Picture 36" | ||
− | src=" | + | src="Modelling444_files/image022.png"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>So there two | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'>So there two | ||
Line 783: | Line 783: | ||
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=438 height=66 id="Picture 37" | border=0 width=438 height=66 id="Picture 37" | ||
− | src=" | + | src="Modelling444_files/image026.png"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'><img | ||
border=0 width=433 height=148 id="Picture 38" | border=0 width=433 height=148 id="Picture 38" | ||
− | src=" | + | src="Modelling444_files/image027.png"></span></p> |
<p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | <p class=MsoNormal><span style='font-size:16.0pt;line-height:107%'> </span></p> | ||
Line 907: | Line 907: | ||
</html> | </html> | ||
+ | |||
{{Template:IIT_Kanpur/Footer}} | {{Template:IIT_Kanpur/Footer}} |
Revision as of 01:37, 18 October 2018
Modelling
Overview
Mathematical modelling is fundamental to synthetic biology, a tool that allows for deeper understanding of biological systems, acting as a link between the conception and the physical realisation of a biological circuit. Being able stimulate and understand our system behaviour before actual implementation saves both time and resources.
Through our modelling we tried to gain insight into our system so that we could improve it and make it realistically achievable.
We tried to describe the whole system with a mathematical system of linear ODEs which could characterizes the expression and secretion of all enzymes, the associated substrate – enzyme kinetics.
In order to realize the long term goal of developing a detergent biodegradation device for household and commercial use we tried to implement continuous culture modelling on our bioreactor design in order to estimate yearly cost of detergent biodegradation.
_________________________________________________________________________________________________________________________
Single Cell Modelling
Allows to model our gene regulatory network (GRN) and the extracellular secretion of our enzyme alkyl sulfatase (SdsA1).
This model helped us gain insight into our system in order to understand dependence of rate of secretion of alkyl sulfatase in media under varying promoter strengths and secretion efficiencies due to the different secretion extracellular secretion tags PelB and OmpT.
Our model is based on overexpression of alkyl sulfatase under constitutive promoters from Anderson promoter collection in iGEM registry. The concentration of our enzyme SdsA1 is then predicted using the rates of transcription, translation and degradation (of both mRNA and protein) that are known in literature.
Since under a constitutive gene expression is unregulated, it is always on and its strength could be modelled through the transcription rate constant k1.
Using the law of mass action
1.Transcription rate k1 is estimated from literature.
2.Translation rate k2 is estimated from the literature
3.mRNA degradation (d1) and Protein degradation rate (d2) are known for Ecoli through literature.
Since SdsA1 (alkyl sulfatase) a extracellular enzyme, it was essential to understand effect of secretion efficiencies of our enzyme from Ecoli cells, in order to determine concentration of SdsA1 in the media, which would be needed to model our enzyme substrate kinetics in order to understand SDS(Sodium Dodecyl Sulfate ) degradation.
We tried to model our protein secretion using a empirical secretion law used by iGEM Stuttgart 2017 team.
rsecretion : secretion rate
[enzyme] : enzyme concentration
s : secretion efficiency
t : time
Here the secretion efficiency is a value between zero and one .
Since reliable data on expression of SdsA1 and its extracellular expression in Ecoli was not available we concluded that our model could only provide a qualitative understanding various factors on these.
Fig 1.Simbiology implementation of our Model
Fig.2 Effect of secretion efficiency on enzyme production
Fig.3 Effect of promoter strength on enzyme production
___________________________________________________________________________________________________________________________
Enzyme Kinetics
We use the simple Michaelis-Menten formula to describe our enzymes’ kinetics.
Here, Vmax represents the maximum velocity achieved by the system, at maximum (saturating) substrate concentrations. KM (the Michaelis constant; sometimes represented as KS instead) is the substrate concentration at which the reaction velocity is 50% of the Vmax. [S] is the concentration of the substrate S.
Our enzyme (E) being SDS, substrate S being SdsA1 and P being our final product 1-Dodecanol.
Here k1 is rate of forward and k-1 being rate of backword reactions and k2 being rate of product formation.
In terms of specific Michaelis-Menten reaction, these constants are quoted in the literature as:
We assumed a average SDS concentration of 5-10 mg/L in domestic wastewater discharges.
_____________________________________________________________________________________________________________________________
Continuous Culture Modelling
Fig4. Our SDS biodegradation chemostat illustration.
In order to understand if our project could be implemented in a real world we decided to check its economic sustainability by trying to estimate the yearly cost of operation of our bioreactor.
To do so we implement a model based on previous model developed by iGEM 2017 Manchester team who were trying to estimate cost of chemostat operation for cleaning Phosphate in wastewater.
The growth of bacteria in its exponential phase can be represented in the following exponential growth equation:
where:
x
is the bacteria concentration (dry weight mass/unit volume) at time
Monod showed that there is a relationship between the specific growth rate and the concentration of a limiting growth substrate that can be represented in this equation:
where:
Ks
is the saturation
constant – the value of
Bacterial growth and utilization of substrate is depicted by the Monod by the equation:
where Y is known as the yield constant.
Here
In the
chemostat fresh growth medium is added into the vessel at a steady flow-rate
(
Assuming every organism will have an equal probability of leaving the vessel within a given time. The wash-out rate (rate in which organism initially present in the vessel will be washed out) can be expressed as:
where
1. Changes in concentration of organism
In a continuous culture, combining growth (1) and washout rate (5) we have the net rate of increase is therefore:
2. Changes in substrate concentration
Assuming substrate
enters the vessel at a concentration
When
So the two parameters
D and
We use values of these constants as referenced here by iGEM Manchester 2017.
Finally output is modelled through the equation:
So there two
design parameters in our bioreactor design model required for consideration.
Cost Estimation
In order to achieve economically viable bioreactor we need to use a cheap easily available source of growth medium like molasses.
-Molasses cost $0.07/kg
-The density of molasses is roughly 1.4 kg/L
-Therefore, 1 L of molasses will cost $0.07 x 1.4 = $0.098
1-Dodecanol manufactured by conventional methods usually is contaminated by long carbon chain compounds, hence are associated with expensive purification costs. The low downstream processing costs of our final product 1-dodecanol obtained from bacterial degradation of SDS may help us cut down our costs, hence this could lead to development of economically viable product.
So based our model we get the necessary cost for production of 1 kg of E.coli that would be needed for SDS degradation.
Also market price of detergent grade SDS is about Rs 160/kg = $2.18
And price of of 1-dodecanol (98%) is about Rs 9070/kg =123.3
Based on these rough estimate of prices we can estimate our yearly cost of operation.
___________________________________________________________________________________________________________________________
References:
1.Towards the Identification of Type II Secretion Signals in a Nonacylated Variant of Pullulanase from Klebsiella oxytoca (2005), Olivera Francetić and Anthony P. Pugsley.
2.http://www.bg.ic.ac.uk/research/g.stan/2010_Course_MiB_article.pdf, Accessed 04/08/2017.
3.Commercial Laundry Water CharacterisationJ. K. Braga*, M. B. A. Varesche
Department of Hydraulics and Sanitation, Engineering School of São Carlos, São Paulo University,
São Carlos, Brazil
4.Guy-Bart Stan. Modelling in Biology. Lecture notes, 2017.
5.https://math.la.asu.edu/~halsmith/bacteriagrow.pdf