Difference between revisions of "Team:NCTU Formosa/Model"

Line 46: Line 46:
 
       text-align: center;
 
       text-align: center;
 
     }
 
     }
 +
 
     .title444{
 
     .title444{
 
       font-size: 7vmin;
 
       font-size: 7vmin;
      margin: 70px;
 
      padding-top: 50px;
 
 
       text-align: center;
 
       text-align: center;
        
+
       margin-left: 10%;
 +
      display: inline-block;
 
     }
 
     }
 +
 
     .title_1{
 
     .title_1{
 
       font-size: 6vmin;
 
       font-size: 6vmin;
Line 300: Line 301:
 
     .frame>hr,.title_3,.title_4{
 
     .frame>hr,.title_3,.title_4{
 
       display: none;
 
       display: none;
 +
    }
 +
 +
    .seemore{
 +
      width: 12%;
 +
      margin-left: 44%;
 +
      cursor: pointer;
 +
      transition-duration: 0.4s;
 +
    }
 +
 +
    .seemore:hover{
 +
      transform: scale(1.1);
 +
    }
 +
 +
    .close{
 +
      width: 12%;
 +
      margin-left: 44%;
 +
      cursor: pointer;
 +
      transition-duration: 0.4S;
 +
      display: none;
 +
    }
 +
 +
    .close:hover{
 +
      transform: scale(1.1);
 +
    }
 +
 +
    .assumption_icon{
 +
      width: 8%;
 +
      display: inline-block;
 +
      margin-left: 10%;
 +
    }
 +
 +
    .assumption{
 +
      border: solid 3px #5ccdc5;
 +
      border-radius: 2vw;
 +
      padding: 1vw;
 
     }
 
     }
  
Line 409: Line 445:
  
 
     </div>
 
     </div>
 +
    <div class="assumption">
 +
      <img src="https://static.igem.org/mediawiki/2018/0/0d/T--NCTU_Formosa--microbiota.png" class="assumption_icon">
 +
      <div class="title444">Assumptions of Whole Model</div>
 +
      <div class="text">
 +
        <p>
  
<div class="title444">The Assumptions of whole model</div>
+
        </p>
<div class ="title_1">Weka</div>
+
      </div>
<div class="text">
+
      <img src="https://static.igem.org/mediawiki/2018/2/24/T--NCTU_Formosa--Seemore2.png" class="seemore">
<p>1. The growth of the bacteria and the correlation between two different bacteria are only relative with N, P, and K fertilizer in soil.<BR></p>
+
      <div class="show">
<p>2. Soil organic carbon is constant.<BR></p>
+
        <div class ="title_1">Microbiota Prediction</div>
<p>3. Unknown bacteria are not in the soil.<BR></p>
+
        <div class="text">
<p>4. N, P, K will not loss after spreading in the soil.<BR></p>
+
        <p>1. The growth of the bacteria and the correlation between two different bacteria are only relative with N, P, and K fertilizer in soil.<BR></p>
<p>5. The growth rate of all bacteria has same relationship with soil organic carbon.<BR></p>
+
        <p>2. Soil organic carbon is constant.<BR></p>
<p>6. The function of bacteria will not change because of the change of the environment.<BR></p>
+
        <p>3. Unknown bacteria are not in the soil.<BR></p>
<p>7. If the spearman's rank correlation coefficient is lower than -0.7 or higher than 0.7, the two bacteria which combined with this value have correlation.<BR></p>
+
        <p>4. N, P, K will not loss after spreading in the soil.<BR></p>
</div>
+
        <p>5. The growth rate of all bacteria has same relationship with soil organic carbon.<BR></p>
<div class ="title_1">Growth curve</div>
+
        <p>6. The function of bacteria will not change with the environment.<BR></p>
<div class="text">
+
        <p>7. If the spearman's rank correlation coefficient is lower than -0.7 or higher than 0.7, our model will take this correlationship into account.<BR></p>
<p>1. Temperature, pH, EC is constant after we detect first time.<BR></p>
+
        </div>
<p>2. The growth of subtilis is only influence on temperature, pH, EC, N, P, and K.<BR></p>
+
        <div class ="title_1">Growth Model</div>
<p>3. The growth of subtilis doesn’t interfere with other bacteria.<BR></p>
+
        <div class="text">
<p>4. The degradation of bacteriocin doesn’t interfere with external factor.<BR></p>
+
        <p>1. Temperature, pH, EC is constant after we detect first time.<BR></p>
<p>5. After the microbiota reaches the dynamic equilibrium, it is only affected by bio-stimulator.<BR></p>
+
        <p>2. The growth of <i>B. sub</i> only depends on the conditions of temperature, pH, EC, N, P, and K.<BR></p>
</div>
+
        <p>3. The growth of <i>B. sub</i> doesn’t interfere with other bacteria.<BR></p>
<div class ="title_1">Productivity model</div>
+
        <p>4. The degradation of bacteriocin doesn’t interfere with external factors.<BR></p>
<div class="text">
+
        <p>5. After the microbiota reaches the dynamic equilibrium, it will only affected by bio-stimulator.<BR></p>
<p>1. The growth of plant is only influence on N, P, and K in soil.<BR></p>
+
        </div>
<p>2. After spreading fertilizer, plant will absorb all of it before we spread fertilizer next time.<BR></p>
+
        <div class ="title_1">Productivity Model</div>
</div>
+
        <div class="text">
<div class ="title_1">NGS</div>
+
        <p>1. The growth of plant is only influence on N, P, and K in soil.<BR></p>
<div class="text">
+
        <p>2. After spreading fertilizer, plant will absorb all of it before we spread fertilizer next time.<BR></p>
<p>1. The lower bacteria ratio is, the smaller influence it causes.<BR></p>
+
        </div>
</div>
+
        <div class ="title_1">NGS Data Analysis</div>
 
+
        <div class="text">
 +
        <p>1. The lower bacteria ratio is, the smaller influence it causes.<BR></p>
 +
        </div>
 +
        <img src="https://static.igem.org/mediawiki/2018/2/26/T--NCTU_Formosa--Close.png" class="close">
 +
      </div>
 +
    </div>
  
  
Line 534: Line 580:
  
  
 +
        $(".seemore").click(function(){
 +
          $(".show").show(500);
 +
          $(".seemore").hide();
 +
        });
 +
        $(".close").click(function(){
 +
          $(".show").hide(500);
 +
          $(".seemore").show();
 +
        });
  
 
</script>
 
</script>

Revision as of 16:19, 7 December 2018

Navigation Bar Template

Overview

     The purpose of our smart farming system is to precisely regulate soil microbiota using bio-stimulators to achieve a desired effect. While microbiology and ecology drive the efficiency of our bio-stimulators, dry-lab analyses and models power the control center of our system. To truly achieve precise regulation, we designed a system of interconnected models, linked sensors together through our IoTtalk platform and strengthened by continuous feedback of data. NGS data provides invaluable details of our bacterial regulation network. Machine learning software in the form of Weka processes these details, granting prediction capabilities made more accurate through self-learning. An electrical conductivity sensor details levels of nitrogen, phosphorus and potassium present in soil and alerts farmers when another application is needed, and a curcumin sensor allows for consistent monitoring of curcumin concentrations without damaging plants. Both sensors transmit figures constantly through IoTtalk, providing steady data for calibration of their respective models through artificial intelligence. Finally, inhibition modelling of newly constructed bio-stimulators in the form of bacteriocins grants even greater precision, while peptide prediction using the Scoring Card Method characterizes even more novel and efficient bio-stimulators. Click below to learn how we turn farming into a science!

Microbiota Prediction


Predict how biostimulators effect bacterial distribution using Weka machine learning.

See More>>

Peptide Prediction


Scoring Card Method predicts new antimicrobial peptides as new bio-stimulators.

See More>>

Growth Model


Relate soil factors and bacteriocins affect B. subtilis growth through Simulink.

See More>>

Productivity Model


Model the relationship between cumulative fertilizer use and final productivity.

See More>>

NGS Data Analysis


Analyze the microbiota and ensure soil health with next generation sequencing.

See More>>

Assumptions of Whole Model

Microbiota Prediction

1. The growth of the bacteria and the correlation between two different bacteria are only relative with N, P, and K fertilizer in soil.

2. Soil organic carbon is constant.

3. Unknown bacteria are not in the soil.

4. N, P, K will not loss after spreading in the soil.

5. The growth rate of all bacteria has same relationship with soil organic carbon.

6. The function of bacteria will not change with the environment.

7. If the spearman's rank correlation coefficient is lower than -0.7 or higher than 0.7, our model will take this correlationship into account.

Growth Model

1. Temperature, pH, EC is constant after we detect first time.

2. The growth of B. sub only depends on the conditions of temperature, pH, EC, N, P, and K.

3. The growth of B. sub doesn’t interfere with other bacteria.

4. The degradation of bacteriocin doesn’t interfere with external factors.

5. After the microbiota reaches the dynamic equilibrium, it will only affected by bio-stimulator.

Productivity Model

1. The growth of plant is only influence on N, P, and K in soil.

2. After spreading fertilizer, plant will absorb all of it before we spread fertilizer next time.

NGS Data Analysis

1. The lower bacteria ratio is, the smaller influence it causes.