Line 43: | Line 43: | ||
<img src="https://static.igem.org/mediawiki/2018/f/f1/T--FSU--placeholderImage.png" style="width:100%; height:200px;"> | <img src="https://static.igem.org/mediawiki/2018/f/f1/T--FSU--placeholderImage.png" style="width:100%; height:200px;"> | ||
<p> | <p> | ||
− | The Rcs signal transduction system is a two-component stress response that maintains the outer | + | The Rcs "Regulator Capsule Synthesis" signal transduction system is a two-component stress response that maintains the outer surface of the E. Coli cell. Proteins RscC and RcsD are inner membrane proteins that direct a signal to RcsB, a transcription factor that activates a number of genes that synthesize membrane proteins and capsules. More specifically, RcsC is a sensory histidine kinase that autophosphorylates in response to an environmental signal, and then transfers the phosphate group to RcsD, the response regulator, and then to RcsB. |
<p> | <p> | ||
</div> | </div> | ||
Line 50: | Line 50: | ||
<img src="https://static.igem.org/mediawiki/2018/f/f1/T--FSU--placeholderImage.png" style="width:100%; height:200px;"> | <img src="https://static.igem.org/mediawiki/2018/f/f1/T--FSU--placeholderImage.png" style="width:100%; height:200px;"> | ||
<p> | <p> | ||
− | + | The Psp "Phage Shock Protein" system involves an inner membrane protein pspA, which responds to membrane stresses and regulates the psp operon, which responds to phage infection. The pspA protein also suppresses the proton motive foce from extruding hydrogen protons through a damaged cell membrane due to cellular stress. | |
<p> | <p> | ||
</div> | </div> |
Revision as of 04:56, 12 September 2018
OVERVIEW
Our first system involves using sound as a mechanical force to open a mechanosensitive channel within the E. Coli membrane. This opening allows the transmission of our zinc ion signal to flow into the cell, activating our genetic response system. Particularly, zinc will enter the cytosol and bind to ZntR, a transcriptional activator protein for the gene zntA, which encodes a zinc exporter protein channel, ZntA.
The second system involves a protein-based stress response to sound. The protein BamE is responsible for outer membrane protein assembly, and is shown to be activated by RpoE, the sigma 24 factor of RNA polymerase, as RNA polymerase binds to the bamE promoter for the gene's transcription. RpoE is known for its response to stress that affects outer membrane proteins and membranous lipopolysaccharides.
The Rcs "Regulator Capsule Synthesis" signal transduction system is a two-component stress response that maintains the outer surface of the E. Coli cell. Proteins RscC and RcsD are inner membrane proteins that direct a signal to RcsB, a transcription factor that activates a number of genes that synthesize membrane proteins and capsules. More specifically, RcsC is a sensory histidine kinase that autophosphorylates in response to an environmental signal, and then transfers the phosphate group to RcsD, the response regulator, and then to RcsB.
The Psp "Phage Shock Protein" system involves an inner membrane protein pspA, which responds to membrane stresses and regulates the psp operon, which responds to phage infection. The pspA protein also suppresses the proton motive foce from extruding hydrogen protons through a damaged cell membrane due to cellular stress.
What should this page contain?
- Explanation of the engineering principles your team used in your design
- Discussion of the design iterations your team went through
- Experimental plan to test your designs