Line 47: | Line 47: | ||
<body style="height:100%";> | <body style="height:100%";> | ||
+ | |||
+ | <div class="title_picture"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/6/6c/T--Bielefeld-CeBiTec--title-img-bielefeld.jpg" style="width:100%"> | ||
+ | </div> | ||
<div class="container"> | <div class="container"> |
Revision as of 12:18, 24 September 2018
siRNA/RNAi
Protein biosynthesis is strongly regulated by different post- and pretranslational mechanisms. Post-translational regulation is realized by small interfering RNAs (siRNA)which block the ribosome binding site (RBS) and inhibit transcription by the RNA interference (RNAi) mechanism. Both mechanisms use the RNA chaperone Hfq to facilitate the hybridization of siRNA and mRNA (Na et al., 2013).
After transcription, RNAs are protected from degradation by a triphosphate at the 5’ terminus. Monophosphorylated ends are produced through maturation of the RNA by internal cleavage or by cleavage of pyrophosphate at the 5’ terminus (Foley et al., 2015).
Cleavage of the 5’ terminal phosphates is also the first step in RNA degradation. RNase E plays a major role in RNA degradation as well as in RNAi, as it does not only degrade monophosphorylated RNAs but can also accept a monophosphorylated 5’ terminus as an activator that triggers a conformational change by interaction with the 5’ sensing pocket. It has been shown that this allows the RNase E to cleave mRNA. Therefore, a complementary siRNA with unpaired bases at the 5’ terminus bound to an mRNA can induce cleavage of the mRNA. In a test four unpaired bases were sufficient and cleavage occurred 6 bp downstream of the homologue region. The required complementary sequence was rather short being only 9 bp long.
To enhance the degrading capability of siRNAs the 5’ terminus can be tailored to match the substrate specificity of the RNA pyrophosphohydrolase RppH by having a C at Position 2 from the 5’ terminus (Bandyra et al., 2012).
To find and design possible siRNAs for RNAi we designed and tested a program which also predicts secondary structures and the non-complementary 5’ terminus.
*Link here* Additionally we designed a two vector system to scan single siRNAs or siRNA libraries for the most effective RNAi silencing of a given target gene.
Mechanism
Two Vector System
There are two versions of the Target Vektor. Version one is comprised of the PTet promoter, a lacZ-alpha cassette, a linker and the reporter protein AmilCP. To enable flourescence measurements a version containing the Blue Flourescent Protein (BFP) has been constructed as well. With higher silencing effectivity the absorption declines which can lead to false positive results in cases where the reporter protein does not work as expected. The second version has the lacZ-alpha cassette linked to the LacI protein. If transcribed correctly this inhibits the Lac promoter which in turn produces the reporter protein AmilCP if not inhibited.
RNAi versus Knockouts
Using the siRNA Testing System
Bandyra, K. J., Said, N., Pfeiffer, V., Górna, M. W., Vogel, J., & Luisi, B. F. (2012). The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Molecular cell, 47(6), 943-953.
Deana, A., Celesnik, H., & Belasco, J. G. (2008). The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature, 451(7176), 355.
Foley, P. L., Hsieh, P. K., Luciano, D. J., & Belasco, J. G. (2015). Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. Journal of Biological Chemistry, jbc-M114.
Na, D., Yoo, S. M., Chung, H., Park, H., Park, J. H., & Lee, S. Y. (2013). Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nature biotechnology, 31(2), 170.
Deana, A., Celesnik, H., & Belasco, J. G. (2008). The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature, 451(7176), 355.
Foley, P. L., Hsieh, P. K., Luciano, D. J., & Belasco, J. G. (2015). Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. Journal of Biological Chemistry, jbc-M114.
Na, D., Yoo, S. M., Chung, H., Park, H., Park, J. H., & Lee, S. Y. (2013). Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nature biotechnology, 31(2), 170.