Difference between revisions of "Team:Newcastle/InterLab"

Line 50: Line 50:
 
                 <div class="col-full">
 
                 <div class="col-full">
 
                             <h3 class="subhead"></h3>
 
                             <h3 class="subhead"></h3>
                 <h1 class="display-2">2018 Interlab study aims</h1>
+
                 <h1 class="display-2">2018 InterLab Study Aims</h1>
 
                 </div>
 
                 </div>
  
Line 68: Line 68:
  
 
      
 
      
 +
    <section id='team' class="s-services">
  
 +
        <div class="row section-header has-bottom-sep" data-aos="fade-up">
 +
                <div class="col-full">
 +
                            <h3 class="subhead"></h3>
 +
                <h1 class="display-2">Calibration Steps</h1>
 +
                </div>
 +
 +
        </div> <!-- end section-header -->
 +
 +
        <div class="row services-list block-1-2 block-tab-full">
 +
 +
        <div class="row about-desc" data-aos="fade-up">
 +
            <div class="col-full">
 +
                <p>Three calibration steps were carried out prior to experimental measurements being taken: <br><br> 
 +
 +
First, a LUDOX CL-X 45 % colloidal silica suspension was used to calculate a conversion factor for the Abs600 value measured by the plate reader to a comparable OD600 value, considering path length and well volume. Abs600 of 1:2 dilutions of LUDOX silica suspension were taken in triplicate and a reference OD600 of 0.063 (the reference value for 100 µL of LUDOX CL-X in a well of a standard 96-well flat-bottom black with clear bottom plate) divided by the mean measured value to give a conversion factor.   </p>
 +
 +
<img src="https://static.igem.org/mediawiki/2018/f/fc/T--Newcastle--InterLabTable.PNG">
 +
 +
                </div>
 +
 +
            </div>
 +
 +
        </div>      <!-- end services-list -->
  
  

Revision as of 13:53, 4 October 2018

Menu

Alternative Roots

InterLab Study

2018 InterLab Study Aims

A weakness in the measurement of fluorescence relative to optical density (OD), as with previous IGEM interlab protocols, is the potential discrepancy between optical density and actual cell concentration. This year the iGEM study aims to reduce lab-to-lab variability further by measuring GFP fluorescence relative to absolute cell counts or colony forming units. Normalisation of fluorescence to colony forming units goes further by allowing measurement of fluorescence relative only to viable cells, and thus a more accurate measurement of promoter strength, whereas OD600 and absolute cell count measures cannot differentiate between viable and non-viable cells.

Calibration Steps

Three calibration steps were carried out prior to experimental measurements being taken: 

  First, a LUDOX CL-X 45 % colloidal silica suspension was used to calculate a conversion factor for the Abs600 value measured by the plate reader to a comparable OD600 value, considering path length and well volume. Abs600 of 1:2 dilutions of LUDOX silica suspension were taken in triplicate and a reference OD600 of 0.063 (the reference value for 100 µL of LUDOX CL-X in a well of a standard 96-well flat-bottom black with clear bottom plate) divided by the mean measured value to give a conversion factor.  





Description

REFERENCES

1. Jousset, A., et al. (2009). "Predators promote defence of rhizosphere bacterial populations by selective feeding on non-toxic cheaters." The Isme Journal 3: 666

2. Jousset, A., et al. (2009). "Predators promote defence of rhizosphere bacterial populations by selective feeding on non-toxic cheaters." The Isme Journal 3: 666

3. Vanitha SC & Umesha S (2011) Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biologia Plantarum 55(2):317-322.

4. United Nations, Department of Economic and Social Affairs, Population Division (2017) World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. https://population.un.org/wpp/Publications/Files/WPP2017_KeyFindings.pdf

5. Food and Agriculture Organization of the United Nations (2015) World Fertilizer Trends and Outlook to 2018. http://www.fao.org/3/a-i4324e.pdf

6. Usman MN, MG; Musa, I (2015) Effect of Three Levels of NPK Fertilizer on Growth Parameters and Yield of Maize-Soybean Intercrop. International Journal of Scientific and Research Publications 5(9).

7. Pfromm PH (2017) Towards sustainable agriculture: Fossil-free ammonia. Journal of Renewable and Sustainable Energy 9(3):034702.

8. Bitew YA, M (2017) Impact of Crop Production Inputs on Soil Health: A Review. Asian Journal of Plant Sciences 16(3):109-131.

9. Yang X-e, Wu X, Hao H-l, & He Z-l (2008) Mechanisms and assessment of water eutrophication. Journal of Zhejiang University. Science. B 9(3):197-209.

10. Carmichael WW (2001) Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs”. Human and Ecological Risk Assessment: An International Journal 7(5):1393-1407.

11. New Partnership for Africa's Development (2013) Agriculture in Africa - Transformation and Outlook. http://www.un.org/en/africa/osaa/pdf/pubs/2013africanagricultures.pdf

12. Food and Agriculture Organization of the United Nations (2017) World Fertilizer Trends and Outlook to 2020. http://www.fao.org/3/a-i6895e.pdf

13. Bergey, D. H., et al. (1984). Bergey's manual of systematic bacteriology. Baltimore, MD, Williams & Wilkins.

14. Gómez-Lama Cabanás C, Schilirò E, Valverde-Corredor A, & Mercado-Blanco J (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Frontiers in Microbiology 5:427.

15. Gross, H. and J. Loper (2009). Genomics of secondary metabolite production by Pseudomonas spp.

16. Sharma SB, Sayyed RZ, Trivedi MH, & Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587.

17. Ruffner, B., et al. (2013). "Oral insecticidal activity of plant-associated pseudomonads." Environmental Microbiology 15(3): 751-763.

18. Jousset, A., et al. (2009). "Predators promote defence of rhizosphere bacterial populations by selective feeding on non-toxic cheaters." The Isme Journal 3: 666

19. Vanitha SC & Umesha S (2011) Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biologia Plantarum 55(2):317-322.

20. Maheshwari DK (2012) Bacteria in Agrobiology: Plant Probiotics (Springer Berlin Heidelberg).

21. Despommier D (2011) The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J fur Verbraucherschutz und Leb 6(2):233–236.

22.World Health Organization. (2018). Q&A: genetically modified food. [online] Available at: http://www.who.int/foodsafety/areas_work/food-technology/faq-genetically-modified-food/en/ [Accessed 13 Sep. 2018].