Difference between revisions of "Team:Tacoma RAINmakers/Human Practices"

Line 500: Line 500:
 
</script>
 
</script>
 
</head>
 
</head>
 
 
<!--
 
<body>
 
  <nav class="navbar navbar-default navbar-fixed-top" style=" padding-top: 20px;">
 
    <div class="container-fluid">
 
      <div class="navbar-header">
 
 
            </div>
 
 
        </div>
 
    <!-- /.container-fluid -->
 
 
-->
 
  
  
Line 519: Line 505:
 
<div class="bg-primary">
 
<div class="bg-primary">
 
<section>
 
<section>
   
 
    <!--
 
<div class="col-lg-16">
 
<center>
 
            <img src="https://static.igem.org/mediawiki/2016/e/e4/T--Imperial_College--ProtoBanner.png" height="450"/>
 
          </center>
 
  
</div>
 
-->
 
  
  
 +
<div class="col-lg-10 col-centered">
  
<div class="col-lg-10 col-centered">
 
    <!--
 
-->
 
 
     <h2> Integrated Human Practices <br><br></h2>
 
     <h2> Integrated Human Practices <br><br></h2>
 
      
 
      
Line 606: Line 582:
 
                 <div id="P2-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="P2">
 
                 <div id="P2-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="P2">
 
                     <div class="panel-body">
 
                     <div class="panel-body">
    <!--
+
 
-->
+
 
                         <p>
 
                         <p>
 
                         To continue familiarizing ourselves with problems caused by arsenic contamination in the environment, we turned to our local health department. We were able to get an interview with Mr. Greg Tanbara, a Health Promotion Coordinator for the Tacoma-Pierce County Health Department. Mr. Tanbara analyzes the environmental damage caused by the Asarco Plant destruction and connects with members of the community that have been affected. He told us that the state has allocated 180 million dollars to revitalizing the soil in the 1000 square mile radius most heavily contaminated by the plant’s destruction. As of today, approximately 90 million dollars have been spent on the area’s recovery, but only a small fraction of potentially dangerous areas have been tested. With the information gained from meeting with Mr. Tanbara, we learned how crucial it was for our project to be both easily useable and affordable for homeowners. The creation of an at-home test for arsenic will allow citizens to test the soil and water themselves, before requiring assistance from the health department.
 
                         To continue familiarizing ourselves with problems caused by arsenic contamination in the environment, we turned to our local health department. We were able to get an interview with Mr. Greg Tanbara, a Health Promotion Coordinator for the Tacoma-Pierce County Health Department. Mr. Tanbara analyzes the environmental damage caused by the Asarco Plant destruction and connects with members of the community that have been affected. He told us that the state has allocated 180 million dollars to revitalizing the soil in the 1000 square mile radius most heavily contaminated by the plant’s destruction. As of today, approximately 90 million dollars have been spent on the area’s recovery, but only a small fraction of potentially dangerous areas have been tested. With the information gained from meeting with Mr. Tanbara, we learned how crucial it was for our project to be both easily useable and affordable for homeowners. The creation of an at-home test for arsenic will allow citizens to test the soil and water themselves, before requiring assistance from the health department.
Line 634: Line 609:
 
                 <div id="P3-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="P3">
 
                 <div id="P3-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="P3">
 
                     <div class="panel-body">
 
                     <div class="panel-body">
<!--
 
<p>
 
<b>Materials:</b><br>
 
2x Phusion Mastermix<br>
 
10 µM forward primer<br>
 
10 µM forward primer<br>
 
PCR tube<br>
 
Sterile water<br>
 
Plasmid DNA<br>
 
<br>
 
<b>Methods:</b><br>
 
For a 25 µL reaction<br>
 
<ol style="font-size:16px;">
 
<li>In a PCR tube on ice, combine  1-10 ng of plasmid DNA, 1.25 µL of 10 µM forward primer, 1.25 µL of 10 µM reverse primer to a PCR tube on ice, 12.5 µL of 2x Phusion Mastermix, and sterile water up to 25 µL.
 
<br><i>Note: It is important to add Phusion Master Mix last in order to prevent primer degradation
 
caused by the 3 ́→ 5 ́ exonuclease activity</i></li>
 
<li>Gently mix the reaction</li>
 
<li>If necessary, collect the liquid to the bottom of the PCR tube by spinning briefly</li>
 
<li>Transfer the PCR tube from ice to a PCR machine to begin thermocycling</li>
 
</ol>
 
  
<p><br>For a 50 µL reaction<br></p>
 
<ol style="font-size:16px;">
 
<li>In a PCR tube on ice, combine  1-10 ng of plasmid DNA, 2.50 µL of 10 µM forward primer, 2.50 µL of 10 µM reverse primer to a PCR tube on ice, 25 µL of 2x Phusion Mastermix, and sterile water up to 50 µL.
 
<br><i>Note: It is important to add Phusion Master Mix last in order to prevent primer degradation
 
caused by the 3 ́→ 5 ́ exonuclease activity</i></li>
 
<li>Gently mix the reaction</li>
 
<li>If necessary, collect the liquid to the bottom of the PCR tube by spinning briefly</li>
 
<li>Transfer the PCR tube from ice to a PCR machine preheated to 98°C to begin thermocycling</li>
 
</ol>
 
<p><br><b>Thermocycling</b><br>
 
The PCR machine should be set to run the following steps: </p>
 
<table class="table table-bordered table-striped">
 
<thead>
 
        <tr>
 
            <th>Step</th>
 
            <th>Temperature (°C)</th>
 
            <th>Time</th>
 
         
 
        </tr>
 
    </thead>
 
    <tbody>
 
        <tr>
 
            <td>Initial denaturation</td>
 
            <td>98</td>
 
            <td>30 seconds</td>
 
        </tr>
 
        <tr>
 
            <td>25-35 cycles</td>
 
            <td>98 (denaturation)<br>
 
                45-72 (annealing) <a href="#Note1">see Note 1</a><br>
 
                72 (extension)</td>
 
            <td>5-10 seconds <br>
 
                10-30 seconds<br>
 
                15-30 seconds per kb</td>
 
        </tr>
 
        <tr>
 
            <td>Final extension</td>
 
            <td>72</td>
 
            <td>2-5 minutes</td>
 
        </tr>
 
        <tr>
 
            <td>Hold</td>
 
            <td>4</td>
 
            <td>Indefinitely</td>
 
        </tr>
 
 
    </tbody>
 
</table>
 
 
<p id="Note1">Note 1: Use the NEB Tm calculator should be used to determine the annealing temperature when using Phusion: <a target="_blank" href="http://tmcalculator.neb.com/#!/">http://tmcalculator.neb.com/#!/</a></p>
 
 
 
</p>
 
 
  </div>
 
</div>
 
</div>
 
 
<div class="some-padding"></div>
 
<div class="some-padding"></div>
 
 
<div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
 
            <div class="panel panel-default">
 
                <div class="panel-heading" role="tab" id="P4">
 
                    <h4 class="panel-title">
 
                    <a role="button" data-toggle="collapse" data-parent="#accordion" href="#P4-collapse" aria-expanded="false" aria-controls="P4-collapse">
 
<div>
 
                    <div class="col-md-11">Launch Party</div><div class="col-md-1"><i class="fa fa-arrow-down fa-10" aria-hidden="true"></i></div>
 
</div>                   
 
                    </a>
 
                    </h4>
 
 
                </div>
 
                <div id="P4-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="P4">
 
                    <div class="panel-body">
 
<p>
 
<b>Materials:</b><br>
 
Sterile Water<br>
 
25 µL RedTaq mastermix<br>
 
1 E. coli colony<br>
 
2.5 µL of 10 µM forward primer<br>
 
2.5 µL of 10 µM reverse primer<br>
 
<br>
 
<b>Methods:</b><br>
 
<ol style="font-size:16px;">
 
<li>Add a single colony of cells to 50 µL of water. Incubate at 95C for a minute to lyse the cells.</li>
 
<li>Combine 1 µL cell lysate, 25 µL RedTaq mastermix, 2.5 µL of 10 µM forward primer, 2.5 µL of 10 µM reverse primer, and sterile water up to 50 µL. <br>
 
<i>Note: It is important to add RedTaq Master Mix last in order to prevent primer
 
degradation caused by the 3 ́→ 5 ́ exonuclease activity</i></li>
 
<li>Incubate in the thermocycler -  Taq has a lower optimum temperature than Phusion.</li>
 
 
</ol>
 
 
<p><br><b>Thermocycling</b><br>
 
The PCR machine should be set to run the following steps: </p>
 
<table class="table table-bordered table-striped">
 
<thead>
 
        <tr>
 
            <th>Step</th>
 
            <th>Temperature (°C)</th>
 
            <th>Time</th>
 
         
 
        </tr>
 
    </thead>
 
    <tbody>
 
        <tr>
 
            <td>Initial denaturation</td>
 
            <td>98</td>
 
            <td>30 seconds</td>
 
        </tr>
 
        <tr>
 
            <td>25-35 cycles</td>
 
            <td>98 (denaturation)<br>
 
                45-72 (annealing) <a href="#Note1">see Note 1</a><br>
 
                68 (extension)</td>
 
            <td>5-10 seconds <br>
 
                10-30 seconds<br>
 
                15-30 seconds per kb</td>
 
        </tr>
 
        <tr>
 
            <td>Final extension</td>
 
            <td>72</td>
 
            <td>5-10 minutes</td>
 
        </tr>
 
        <tr>
 
            <td>Hold</td>
 
            <td>4</td>
 
            <td>Indefinitely</td>
 
        </tr>
 
 
    </tbody>
 
</table>
 
<p>Note: If loading on a gel, the RedTaq mix contains loading dye, so don’t add anything else.</p>
 
-->
 
 
<p>
 
<p>
 
  Our team was lucky enough to get a meeting with David Lloyd, CEO and Co-Founder of FREDsense Technologies. FREDsense is a Canadian startup based on the 2013 and 2012 Calgary iGEM projects. The focus of the company is to create easily usable field tests for environmental toxins. FRED (Functional Robust Electrochemical Detector) made his first appearance in 2012 alongside OSCAR (Optimized System for Carboxylic Acid Remediation). While OSCAR, the “destroy component” of the project, has not been developed since, FRED (renamed Field-Ready Electrochemical Detector) has made incredible strides since then. Today there are four FRED systems available for pre-order or trial on the FREDsense website, as well as the option of custom sensor development to fit your needs. As an iGEM veteran, current member of the iGEM Human Practices Alumni Committee, and experienced biosensor developer, Mr. Lloyd had welcome advice for us. His guidance helped us develop a plan for what our sensor needed, both ethically, and entrepreneurially.                                           
 
  Our team was lucky enough to get a meeting with David Lloyd, CEO and Co-Founder of FREDsense Technologies. FREDsense is a Canadian startup based on the 2013 and 2012 Calgary iGEM projects. The focus of the company is to create easily usable field tests for environmental toxins. FRED (Functional Robust Electrochemical Detector) made his first appearance in 2012 alongside OSCAR (Optimized System for Carboxylic Acid Remediation). While OSCAR, the “destroy component” of the project, has not been developed since, FRED (renamed Field-Ready Electrochemical Detector) has made incredible strides since then. Today there are four FRED systems available for pre-order or trial on the FREDsense website, as well as the option of custom sensor development to fit your needs. As an iGEM veteran, current member of the iGEM Human Practices Alumni Committee, and experienced biosensor developer, Mr. Lloyd had welcome advice for us. His guidance helped us develop a plan for what our sensor needed, both ethically, and entrepreneurially.                                           
Line 830: Line 651:
 
     </div>
 
     </div>
 
     </div>
 
     </div>
<!--
 
<div class="some-padding"></div>
 
<div class="some-padding"></div>
 
  
<div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
 
            <div class="panel panel-default">
 
                <div class="panel-heading" role="tab" id="P9">
 
                    <h4 class="panel-title">
 
                    <a role="button" data-toggle="collapse" data-parent="#accordion" href="#P9-collapse" aria-expanded="false" aria-controls="P9-collapse">
 
<div>
 
                    <div class="col-md-11">Growth Characterisation</div><div class="col-md-1"><i class="fa fa-arrow-down fa-10" aria-hidden="true"></i></div>
 
</div>
 
                    </a>
 
                    </h4>
 
 
                </div>
 
                <div id="P9-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="P9">
 
                    <div class="panel-body">
 
<p>
 
<b>Materials:</b><br>
 
Microcentrifuge tube<br>
 
Media of choice<br>
 
Overnight Culture of Cells<br>
 
96 well plate<br>
 
Plate reader<br>
 
<br>
 
<b>Methods:</b><br>
 
<ol style="font-size:16px;">
 
<li>Dilute overnight cultures to 0.1 OD. <b>Don’t forget the media control.</b></li>
 
<li>Seed your cells in the 96 well plate at 100μL per well.</li>
 
<li>Make reaction up to 20 µL using sterile water</li>
 
<li>Set the plate reader for 600OD and run it for 12 hours for bacteria or 24 hours plus for yeast
 
</li>
 
</ol>
 
 
  </div>
 
</div>
 
</div>
 
 
<div class="some-padding"></div>
 
<div class="some-padding"></div>
 
 
<div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
 
            <div class="panel panel-default">
 
                <div class="panel-heading" role="tab" id="P10">
 
                    <h4 class="panel-title">
 
                    <a role="button" data-toggle="collapse" data-parent="#accordion" href="#P10-collapse" aria-expanded="false" aria-controls="P10-collapse">
 
<div>
 
                    <div class="col-md-11">Cell Sorting for Co-Culture Characterisation</div><div class="col-md-1"><i class="fa fa-arrow-down fa-10" aria-hidden="true"></i></div>
 
</div>
 
                    </a>
 
                    </h4>
 
 
                </div>
 
                <div id="P10-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="P10">
 
                    <div class="panel-body">
 
<p>
 
<b>Materials:</b><br>
 
Microcentrifuge tube<br>
 
Media of choice<br>
 
Overnight Culture of Cells<br>
 
96 well plate<br>
 
Flow Cytometer<br>
 
PBS<br>
 
<br>
 
<b>Methods:</b><br>
 
<ol style="font-size:16px;">
 
<li>Use Flowjo to predefine the gates for the Flow cytometer. This allows the cells within the co culture to be counted based on size.</li>
 
<li>Dilute the Cultures to 1 OD (don’t forget the media control) and culture together at desired inoculation ratio</li>
 
<li>Set up samples in triplicate form on a 96 well plate. Dilute 10 fold and 100 fold in PBS.</li>
 
<li>Incubate Cells and take samples at desired time points to obtain growth curves</li>
 
</ol>
 
 
  </div>
 
</div>
 
</div>
 
 
<div class="some-padding"></div>
 
<div class="some-padding"></div>
 
 
<div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
 
            <div class="panel panel-default">
 
                <div class="panel-heading" role="tab" id="P11">
 
                    <h4 class="panel-title">
 
                    <a role="button" data-toggle="collapse" data-parent="#accordion" href="#P11-collapse" aria-expanded="false" aria-controls="P11-collapse">
 
 
<div>
 
                    <div class="col-md-11">Quorum Characterisation Experiments</div><div class="col-md-1"><i class="fa fa-arrow-down fa-10" aria-hidden="true"></i></div>
 
</div>                   
 
                    </a>
 
                    </h4>
 
 
                </div>
 
                <div id="P11-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="P11">
 
                    <div class="panel-body">
 
<p>
 
<b>Materials:</b><br>
 
Replica plate or glycerol stock of cells<br>
 
Appropriate antibiotic<br>
 
LB broth<br>
 
96 well plate<br>
 
AHLs (at concentrations of 10pM, 100pM, 1nM, 10nM, 100nM, 1µM, 10µM and 100µM)<br>
 
<br>
 
<b>Methods:</b><br>
 
<ol style="font-size:16px;">
 
<li>Grow overnight culture of cells, either from replica plate or glycerol stock (see overnight culture protocol)
 
</li>
 
<li>In the morning, add 100 µL of the cell suspension to 10 mL LB and 10µL of antibiotic</li>
 
<li>Grow cells in incubator for 3-4 hours at 200rpm and 37°C</li>
 
<li>Blank spectrophotometer with 1mL LB and measure OD of cells (dilute 10x in LB)</li>
 
<li>Make up suspension of cells at OD 0.05</li>
 
<li>Add 100µL of cells to each well in the 96-well plate using the block-filler machine</li>
 
<li>Using the multi-channel pipette add 2µL of intended AHL to each well, add samples in triplicate form
 
</li>
 
<li>Using the multi-channel pipette add 2µL of intended AHL to each well, add samples in triplicate form
 
</li>Run on plate-reader for 12 hours, with fluorescence and absorbance measurements taken every 15 minutes (set plate reader to 37°C and 500rpm shaking)
 
</li>
 
</ol>
 
 
  </div>
 
</div>
 
</div>
 
 
<div class="some-padding"></div>
 
<div class="some-padding"></div>
 
 
<div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
 
            <div class="panel panel-default">
 
                <div class="panel-heading" role="tab" id="P12">
 
                    <h4 class="panel-title">
 
                    <a role="button" data-toggle="collapse" data-parent="#accordion" href="#P12-collapse" aria-expanded="false" aria-controls="P12-collapse">
 
<div>
 
                    <div class="col-md-11">PCR Purification, Gel Extraction &amp; Miniprep</div><div class="col-md-1"><i class="fa fa-arrow-down fa-10" aria-hidden="true"></i></div>
 
</div>                 
 
                    </a>
 
                    </h4>
 
 
                </div>
 
                <div id="P12-collapse" class="panel-collapse collapse" role="tabpanel" aria-labelledby="P12">
 
                    <div class="panel-body">
 
<p>
 
<b>PCR purification</b> was performed according to the QIAquick PCR Purification Kit<br>
 
<b>Gel extraction</b> was performed according to the QIAquick Gel Extraction Kit<br>
 
<b>Minipreps</b> were carried out according to the QIAprep Spin Miniprep Kit<br>
 
 
 
  </div>
 
</div>
 
</div>
 
-->
 
 
</div>
 
</div>
 
     </div>
 
     </div>
Line 1,078: Line 750:
 
</style>
 
</style>
  
<footer class="footer-distributed">
 
 
<div class="footer-right">
 
                <a target="_blank" href="mailto:igem.imperial2016@gmail.com"><i class="fa fa-envelope-o fa-2x"></i></a> 
 
    <a target="_blank" href="https://www.facebook.com/2016imperialigem/"><i class="fa fa-facebook fa-2x"></i></a>
 
<a target="_blank" href="https://twitter.com/imperialigem"><i class="fa fa-twitter fa-2x"></i></a>
 
<a target="_blank" href="https://github.com/IC-iGEM-2016?tab=repositories"><i class="fa fa-github fa-2x fa-fw"></i></a>
 
<p> Email: igem.imperial2016@gmail.com </p>
 
</div>
 
 
 
<div class="footer-left">
 
 
<p class="footer-links">
 
<a target="_blank" href="https://www.imperial.ac.uk/synthetic-biology">
 
        <img class="sponsors" src="https://static.igem.org/mediawiki/2016/6/68/T--Imperial_College--csynbi.png">
 
    </a>
 
 
<a target="_blank" href="http://www.synbicite.com/">
 
        <img class="sponsors" src="https://static.igem.org/mediawiki/2016/1/1c/T--Imperial_College--synb.png">
 
    </a>
 
 
<a target="_blank" href="https://www.neb.com/">
 
        <img class="sponsors" src="https://static.igem.org/mediawiki/2016/e/ed/T--Imperial_College--NEB.png">
 
    </a>
 
<a target="_blank" href="https://www.sebiology.org/">
 
        <img class="sponsors" src="https://static.igem.org/mediawiki/2016/5/5e/T--Imperial_College--SEB.png">
 
    </a>
 
                             
 
                                        <a target="_blank" href="https://wellcome.ac.uk/">
 
        <img class="sponsors" src="https://static.igem.org/mediawiki/2016/b/b5/T--Imperial_College--Wellcom.png">
 
    </a> 
 
 
            <a target="_blank" href="https://www.epsrc.ac.uk/">
 
        <img class="sponsors" src="https://static.igem.org/mediawiki/2016/d/d9/T--Imperial_College--EPSRC.jpg">
 
    </a>
 
<a target="_blank" href="http://www.bbsrc.ac.uk/">
 
        <img class="sponsors" src="https://static.igem.org/mediawiki/2016/1/1e/T--Imperial_College--BBSRC.gif">
 
    </a>
 
<a target="_blank" href="https://www.eppendorf.com/UK-en/">
 
        <img class="sponsors" src="https://static.igem.org/mediawiki/2016/3/3a/T--Imperial_College--Eppendorf.png">
 
    </a>
 
 
<a target="_blank" href="http://www.bmglabtech.com/">
 
        <img class="sponsors" src="https://static.igem.org/mediawiki/2016/e/ee/T--Imperial_College--BMG.png">
 
    </a>
 
 
 
 
</p>
 
</p>
Line 1,132: Line 758:
 
</footer>
 
</footer>
  
 
 
</p>
 
<!--
 
NewPP limit report
 
CPU time usage: 0.007 seconds
 
Real time usage: 0.008 seconds
 
Preprocessor visited node count: 14/1000000
 
Preprocessor generated node count: 64/1000000
 
Post‐expand include size: 82/2097152 bytes
 
Template argument size: 0/2097152 bytes
 
Highest expansion depth: 2/40
 
Expensive parser function count: 0/100
 
-->
 
 
<!-- Saved in parser cache with key 2016_igem_org:pcache:idhash:1288-0!*!*!*!*!*!* and timestamp 20181004172450 and revision id 421339
 
-->
 
                   
 
</div>             <div class="visualClear"></div>
 
            </div>
 
    </div>
 
 
        </div>
 
 
        <!-- Side Menubar -->
 
        <div id="sideMenu">
 
            <a href="https://2016.igem.org">
 
                <div id="home_logo" >
 
                <img src="https://static.igem.org/mediawiki/2016/b/bf/HQ_menu_logo.jpg">
 
                </div>
 
            </a>
 
 
            <div style="clear:both; height:5px;"></div>
 
 
            <div id="menuDisplay"></div>  <!- Menu will be loaded here ->
 
        </div>
 
 
        <!-- Pop_Why Div is definded here -->
 
        <div class="pop_why_cover"></div>
 
 
        <div class="pop_why_box" >
 
            <div class="pop_close">× </div>
 
            <div class="pop_why_content"><h3> Loading ... </h3></div>
 
        </div>
 
  
 
     </body>
 
     </body>
 
      
 
      
 
</html>
 
</html>

Revision as of 04:59, 12 October 2018

Team:TacomaRAINmakers/Notebook - 2017.igem.org

Team:ECUST/Lab/Notebook

<!DOCTYPE html> Team:TacomaRAINMakers/PublicEngagement.igem.org

Loading menubar.....

Integrated Human Practices

As our team’s goal was to create a product for the community, integrating human practices was vitally important.
Click the titles below to see more!

Sue’s Tech Kitchen, the creation of Randi Zuckerberg, is a nationwide event dedicated to getting people excited about science through food. It’s known for its’ 3D printed smores and miracle berries, but it also serves as an opportunity for local groups to share their projects and visions with the community. We held a booth at the event in Tacoma, and had a blast telling our community all about our project. We created a mockup of our project with pH strips to represent the sensor, and solutions of a known acidity to represent water samples from around Puget Sound. Kids loved the idea of putting what looked like paper, into what looked like water, and seeing the paper change colors before their eyes. Adults were more excited about the idea of getting to test their own water and get accurate results that were easy to read. On a whiteboard, we set up a magnetic puzzle of our plasmid parts. Guests got to put together the puzzle as fast as they could, and the best time of each day won a cool water bottle. We met some incredible people, including a woman who helped create the map of arsenic contamination caused by the smelter. We had many people ask to buy test strips, but since the sensor isn’t complete, they settled for signing up for the email list. The event gave us great insight on what matters to the community, and we even got ideas on how to expand the sensor in the future!

To continue familiarizing ourselves with problems caused by arsenic contamination in the environment, we turned to our local health department. We were able to get an interview with Mr. Greg Tanbara, a Health Promotion Coordinator for the Tacoma-Pierce County Health Department. Mr. Tanbara analyzes the environmental damage caused by the Asarco Plant destruction and connects with members of the community that have been affected. He told us that the state has allocated 180 million dollars to revitalizing the soil in the 1000 square mile radius most heavily contaminated by the plant’s destruction. As of today, approximately 90 million dollars have been spent on the area’s recovery, but only a small fraction of potentially dangerous areas have been tested. With the information gained from meeting with Mr. Tanbara, we learned how crucial it was for our project to be both easily useable and affordable for homeowners. The creation of an at-home test for arsenic will allow citizens to test the soil and water themselves, before requiring assistance from the health department.

Our team was lucky enough to get a meeting with David Lloyd, CEO and Co-Founder of FREDsense Technologies. FREDsense is a Canadian startup based on the 2013 and 2012 Calgary iGEM projects. The focus of the company is to create easily usable field tests for environmental toxins. FRED (Functional Robust Electrochemical Detector) made his first appearance in 2012 alongside OSCAR (Optimized System for Carboxylic Acid Remediation). While OSCAR, the “destroy component” of the project, has not been developed since, FRED (renamed Field-Ready Electrochemical Detector) has made incredible strides since then. Today there are four FRED systems available for pre-order or trial on the FREDsense website, as well as the option of custom sensor development to fit your needs. As an iGEM veteran, current member of the iGEM Human Practices Alumni Committee, and experienced biosensor developer, Mr. Lloyd had welcome advice for us. His guidance helped us develop a plan for what our sensor needed, both ethically, and entrepreneurially.

Earlier in the iGEM season, we had a morning interview and lecture with Dr. Jeff Nivala, Sr. Research Scientist and P.I. at University of Washington, as well as a recent addition to the Forbes “30 under 30” list. Dr. Nivala is most known for his research on the storage and transmission of information through molecular barcodes made of DNA and proteins. He has also been an integral part of the development of nanopore sensing technology as a method of protein analysis, which he believes to be the first step in decoding the vast complexities of whole proteomes. After recovering from our initial starstruck reactions, we were thrilled to hear his insight on our project!