Camillelorie (Talk | contribs) |
Camillelorie (Talk | contribs) |
||
Line 105: | Line 105: | ||
− | + | <h1>Introduction</h1> | |
− | + | ||
<!-- <h2 style="text-align: left;"> The Impacts of Excess Fluoride:</h2> --> | <!-- <h2 style="text-align: left;"> The Impacts of Excess Fluoride:</h2> --> | ||
<h2> The Impacts of Excess Fluoride:</h2> | <h2> The Impacts of Excess Fluoride:</h2> |
Revision as of 23:38, 12 October 2018
Description
Introduction
The Impacts of Excess Fluoride:
Unfortunately, mitigating fluoride problems has proven to be very expensive and challenging. Please see our interview with Tewodros Godebo to understand more about how many are attempting to solve the issue of high-fluoride water. One of the issues we are attempting to address with our project is diligently tracking fluoride concentrations after treatment attempts. In rural communities, even once there has been treatment to high-fluoride water, it is difficult to monitor fluoride concentrations after the treatment.
We hope that the operon we have developed may assist the monitoring of fluoride concentrations in small, low-technology villages after treatment of the water has been administered.
Solution
This year, we tested a series of promoters and riboswitch constructs to determine which are conducive to an operon with highest binding ability to fluoride. We were successful in being able to alter the previous CHOP operon so that it may detect concentrations of fluoride as low as ?uM.
About the Riboswitch
Riboswitches may be translational or transcriptional. A transcriptional riboswitch has a “switching sequence” in the aptamer domain that directs the formation of a transcriptional terminator, which signals to RNA polymerase to stop transcription. One may think of this process as an “on” or “off” switch, with “on” allowing for transcription of a gene. When the aptamer (ligand-binding) region of the fluoride riboswitch interacts with fluoride, the terminator is not formed allowing the RNA polymerase to proceed and transcribe the downstream gene.
In nature, this riboswitch regulates the expression of genes that are able to pump high levels of fluoride out of the cell. The crcB gene in E.coli bacteria encodes the fluoride efflux channel, which is capable of pumping fluoride out of the cell so that it is no longer toxic. In our experiments, we used a modified crcB E.coli strain so that fluoride may accumulate in the cell.