Difference between revisions of "Team:Tongji-Software/Template:Example Math"

Line 1: Line 1:
 
<html>  
 
<html>  
 +
 
<head>
 
<head>
<script src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">  
+
  <script type="text/x-mathjax-config">
 +
        MathJax.Hub.Config({
 +
          extensions: ["tex2jax.js"],
 +
          jax: ["input/TeX", "output/HTML-CSS"],
 +
          tex2jax: {
 +
            inlineMath: [ ['$','$'], ["\\(","\\)"] ],
 +
            displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
 +
            processEscapes: true
 +
          },
 +
          "HTML-CSS": { fonts: ["TeX"] }
 +
        });
 +
      </script>
 +
  <script src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">  
 
<head/>
 
<head/>
 
</script>
 
</script>
Line 201: Line 214:
  
  
<math display='block'>
+
<span>$$\[{e^{{\rm{ - }}\Delta {\rm{r}}{G^{' \circ }}/RT}}\]$$</span>
<semantics>
+
<span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span>
  <mrow>
+
  <msup>
+
    <mi>e</mi>
+
    <mrow>
+
    <mtext>-</mtext><mi>&#x0394;</mi><mtext>r</mtext><msup>
+
      <mi>G</mi>
+
      <mrow>
+
      <mo>&#x0027;</mo><mo>&#x2218;</mo></mrow>
+
    </msup>
+
    <mo>/</mo><mi>R</mi><mi>T</mi></mrow>
+
  </msup>
+
  </mrow>
+
  <annotation encoding='MathType-MTEF'>MathType@MTEF@5@5@+=
+
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
+
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
+
  4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr
+
  pepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs
+
  0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaai
+
  aabeqaamaabaabauaakeaacaWGLbWaaWbaaSqabeaacaqGTaGaeyiL
+
  dqKaaeOCaiaadEeadaahaaadbeqaaiaacEcacqWIyiYBaaWccaGGVa
+
  GaamOuaiaadsfaaaaaaa@4891@
+
  </annotation>
+
</semantics>
+
</math>
+
 
+
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 11:21, 13 October 2018

$$\[{e^{{\rm{ - }}\Delta {\rm{r}}{G^{' \circ }}/RT}}\]$$ $$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$