Line 268: | Line 268: | ||
<h1 style="text-align: center;">Organism: Saccharomyces boulardii</h1> | <h1 style="text-align: center;">Organism: Saccharomyces boulardii</h1> | ||
<a class="anchor" id="org"></a> | <a class="anchor" id="org"></a> | ||
− | <p>For our product to work we need to implement it in an organism that can survive in the gut of the patient, but that does not have pathogenic properties. Since the yeast <i>Saccharomyces cerevisiae</i> is commonly used in our lab the first organism of choice was yeast. However, <i>S. cerevisiae</i> is not adapted to the pH variations and higher temperatures in the human gut environment (Palma et al., 2015) and is therefore not the best candidate organism for our product. On the other hand the probiotic yeast <i>Saccharomyces boulardii</i>, a subspecies of <i> S.cerevisiae</i>, is better adapted to the gut pH variations and has an optimal growth temperature of 37 ° (Czerucka et al., 2007; Edwards-Ingram et al., 2007; Palma et al. 2015; Liu et al. 2016). <i>S. boulardii</i> already has a GRAS (Generally Regarded As Safe) status and the genetic makeup is very similar to that of <i>S.cerevisiae</i>, apart from differences in gene copy numbers (Edwards-Ingram et al., 2007; Liu et al., 2016). Since we are testing our system in <i>S. cerevisiae</i> in the lab, <i> S.boulardii</i> is a fitting target organism for our system. Right now several alternative probiotic <i>S. cerevisiae</i> strains are also under development, but none of these have a GRAS status at the moment (Palma et al.,2015). In the future, our system could also be implemented in these yeast strains. </p> | + | <p style="text-align: justify;">For our product to work we need to implement it in an organism that can survive in the gut of the patient, but that does not have pathogenic properties. Since the yeast <i>Saccharomyces cerevisiae</i> is commonly used in our lab the first organism of choice was yeast. However, <i>S. cerevisiae</i> is not adapted to the pH variations and higher temperatures in the human gut environment (Palma et al., 2015) and is therefore not the best candidate organism for our product. On the other hand the probiotic yeast <i>Saccharomyces boulardii</i>, a subspecies of <i> S.cerevisiae</i>, is better adapted to the gut pH variations and has an optimal growth temperature of 37 ° (Czerucka et al., 2007; Edwards-Ingram et al., 2007; Palma et al. 2015; Liu et al. 2016). <i>S. boulardii</i> already has a GRAS (Generally Regarded As Safe) status and the genetic makeup is very similar to that of <i>S.cerevisiae</i>, apart from differences in gene copy numbers (Edwards-Ingram et al., 2007; Liu et al., 2016). Since we are testing our system in <i>S. cerevisiae</i> in the lab, <i> S.boulardii</i> is a fitting target organism for our system. Right now several alternative probiotic <i>S. cerevisiae</i> strains are also under development, but none of these have a GRAS status at the moment (Palma et al.,2015). In the future, our system could also be implemented in these yeast strains. </p> |
<figure style="text-align:center;"> | <figure style="text-align:center;"> | ||
<img src="https://static.igem.org/mediawiki/2018/3/34/T--Chalmers-Gothenburg--Sboulardii.png" class="img-fluid"> | <img src="https://static.igem.org/mediawiki/2018/3/34/T--Chalmers-Gothenburg--Sboulardii.png" class="img-fluid"> |
Revision as of 13:08, 14 October 2018
Navigation
Project Overview
Our product is a pill containing a genetically engineered organism that can be used to detect and treat colon cancer. The organism should be able to localize cancer cells in the colon, locally kill the cells and report the presence of cancer. For this purpose, we have chosen to work with the yeast Saccharomyces boulardii and divided our project into three parts. The first part of the project concerns cancer cell localization, which is achieved with yeast to cancer cell anchoring. By making the yeast express Histone-like protein A on its surface it can specifically bind to cancer cells. In the second part of the project, we make the yeast secrete a target molecule with the purpose to treat cancer. Here, we exploit the native mating system of yeast in order to express the target molecule only when the yeast has accumulated around a tumor. Lastly, in order for the yeast to be able to report the presence of cancer cells, we make it express gas vesicles that can be detected with the help of ultrasound.
Yeast to Cancer Cell Anchoring
Wang, Y., Wang, F., Wang, R., Zhao, P., & Xia, Q. (2015). 2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori. Scientific Reports, 5(1), 16273. https://doi.org/10.1038/srep16273
Souza-Moreira, T. M., Navarrete, C., Chen, X., Zanelli, C. F., Valentini, S. R., Furlan, M., … Krivoruchko, A. (2018). Screening of 2A peptides for polycistronic gene expression in yeast. FEMS Yeast Research, 18(5). https://doi.org/10.1093/femsyr/foy036
Sivertsen, A. C., Bayro, M. J., Belenky, M., Griffin, R. G., & Herzfeld, J. (2010). Solid-State NMR Characterization of Gas Vesicle Structure. Biophysical Journal, 99(6), 1932–1939. https://doi.org/10.1016/J.BPJ.2010.06.041
Daviso, E., Belenky, M., Griffin, R. G., & Herzfeld, J. (2013). Gas Vesicles across Kingdoms: A Comparative Solid-State Nuclear Magnetic Resonance Study. Journal of Molecular Microbiology and Biotechnology, 23(4–5), 281–289. https://doi.org/10.1159/000351340
Walsby, A. E. (1994). Gas vesicles. Microbiological Reviews, 58(1), 94–144. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8177173
Philip, A., & Philip, B. (2010). Colon Targeted Drug Delivery Systems: A Review on Primary and Novel Approaches. Oman Medical Journal, 25(2), 70–78. https://doi.org/10.5001/omj.2010.24
Hébrard, G., Hoffart, V., Beyssac, E., Cardot, J.-M., Alric, M., & Subirade, M. (2010). Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. Journal of Microencapsulation, 27(4), 292–302. https://doi.org/10.3109/02652040903134529
Abraham, S., & Srinath, M. (2007). Development of modified pulsincap drug delivery system of metronidazole for drug targeting. Indian Journal of Pharmaceutical Sciences, 69(1), 24. https://doi.org/10.4103/0250-474X.32102
Tanaka, T., & Kondo, A. (2014). Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology. FEMS Yeast Research, n/a-n/a. https://doi.org/10.1111/1567-1364.12212
Ho, C. L., Tan, H. Q., Chua, K. J., Kang, A., Lim, K. H., Ling, K. L., … Chang, M. W. (2018). Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nature Biomedical Engineering, 2(1), 27–37. https://doi.org/10.1038/s41551-017-0181-y
Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
Cheng, B., Montmasson, M., Terradot, L., & Rousselle, P. (2016). Syndecans as Cell Surface Receptors in Cancer Biology. A Focus on their Interaction with PDZ Domain Proteins. Frontiers in Pharmacology, 7. https://doi.org/10.3389/fphar.2016.00010
Palma, M. L., Zamith-Miranda, D., Martins, F. S., Bozza, F. A., Nimrichter, L., Montero-Lomeli, M., … Douradinha, B. (2015). Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement? Applied Microbiology and Biotechnology, 99(16), 6563–6570. https://doi.org/10.1007/s00253-015-6776-x
Boleij, A., Schaeps, R. M. J., de Kleijn, S., Hermans, P. W., Glaser, P., Pancholi, V., … Tjalsma, H. (2009). Surface-Exposed Histone-Like Protein A Modulates Adherence of Streptococcus gallolyticus to Colon Adenocarcinoma Cells. Infection and Immunity, 77(12), 5519–5527. https://doi.org/10.1128/IAI.00384-09
Liu, J.-J., Kong, I. I., Zhang, G.-C., Jayakody, L. N., Kim, H., Xia, P.-F., … Jin, Y.-S. (2016). Metabolic Engineering of Probiotic Saccharomyces boulardii. Applied and Environmental Microbiology, 82(8), 2280–2287. https://doi.org/10.1128/AEM.00057-16
CZERUCKA, D., PICHE, T., & RAMPAL, P. (2007). Review article: yeast as probiotics -Saccharomyces boulardii. Alimentary Pharmacology & Therapeutics, 26(6), 767–778. https://doi.org/10.1111/j.1365-2036.2007.03442.x
Edwards-Ingram, L., Gitsham, P., Burton, N., Warhurst, G., Clarke, I., Hoyle, D., … Stateva, L. (2007). Genotypic and Physiological Characterization of Saccharomyces boulardii, the Probiotic Strain of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 73(8), 2458–2467. https://doi.org/10.1128/AEM.02201-06
Elmer, McFarland, Surawicz, Danko, & Greenberg. (1999). Behaviour of Saccharomyces boulardii in recurrent Clostridium difficile disease patients. Alimentary Pharmacology and Therapeutics, 13(12), 1663–1668. https://doi.org/10.1046/j.1365-2036.1999.00666.x
Bourdeau, R. W., Lee-Gosselin, A., Lakshmanan, A., Farhadi, A., Kumar, S. R., Nety, S. P., & Shapiro, M. G. (2018). Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature. https://doi.org/10.1038/nature25021
Souza-Moreira, T. M., Navarrete, C., Chen, X., Zanelli, C. F., Valentini, S. R., Furlan, M., … De Montreal User, U. (2018). Screening of 2a Peptides for Polycistronic Gene Expression in Yeast, 46(May 2018). https://doi.org/10.1093/femsyr/foy036/4956763