Difference between revisions of "Team:NUS Singapore-A/Results"

Line 55: Line 55:
 
       <div class="panel">
 
       <div class="panel">
 
         <div class="panel-inside">
 
         <div class="panel-inside">
         <p>xxx</p>
+
        <h2> Glucose-xylose growth experiments</h2>
 +
        <p>
 +
          To investigate the effectiveness of our xylose-utilizing module, we transformed the plasmid containing the native XylR gene and that containing the mutated XylR (XylR*) into <i>E. coli</i> BL21*. Since XylR acts as a co-activator of the xylose operon, we hypothesized that overexpressing native XylR would also help to enhance xylose utilization. Also, the effect would be more pronounced when XylR* was expressed, as it has significantly higher binding affinity. BL21*, BL21*-XylR, and BL21*-XylR* were grown in 0.2% glucose, 0.2% xylose, as well as a mixture of 0.1% glucose and 0.1% xylose. Growth, as an indicator of sugar substrate utilization, was measured via absorbance at 600nm over 8-hours in a microplate reader.
 +
        </p>
 +
        <br>
 +
        <p>
 +
          To verify the expression of XylR and XylR*, SDS-PAGE was conducted for samples taken after induction. Thick bands at approximately 45kDa were observed for induced cells, with no corresponding band for the WT and uninduced samples, showing that XylR and XylR* are overexpressed respectively (Figure 1).
 +
        </p>
 +
        <br>
 +
        <p>
 +
          Our growth experiments displayed rather interesting results. BL21*-XylR* had noticeably the highest growth in all three conditions, while BL21*-XylR displayed considerably little or even no growth (Figure 2a, b, and c). Most importantly, overexpressing XylR* seemed to increase xylose utilization, where the growth of Bl21*-XylR* is significantly higher than the wild-type in xylose (Figure 2e), as well as in a mixture of glucose and xylose (Figure 2f). Our xylose-utilization module likely works!
 +
        </p>
 +
        <br>
 +
        <p>
 +
          Surprisingly, XylR* also appeared to enhance growth in glucose (Figure 1a). We expected it to have similar growth as the wild-type instead. Hence, it is difficult to ascertain whether the augmented growth in xylose is a result of improved utilization or other mechanisms, which is possible due to XylR’s role as a metabolic regulatory factor.
 +
        </p>
 +
        <br>
 +
        <p>
 +
          Nonetheless, BL21*-XylR* exhibited comparable growth rates in glucose and the mixture of glucose and xylose, suggesting co-utilization of sugar substrates occured (Figure 1f). In contrast, this was not observed in the wild-type, where having a mixture of sugars resulted in lower growth rates (Figure 1d). This is significant as we are one step closer to our vision of utilizing lignocellulosic waste as feedstock, which requires simultaneous utilization of glucose and xylose.
 +
        </p>
 +
        <br>
 +
        <p>
 +
          As for BL21*-XylR, there was little to no growth observed regardless of the sugar substrates (Figure 2e). Not only does XylR overexpression fail to improve xylose utilization as hypothesized, there appears to be a growth inhibitory effect. It is possible that other metabolic processes were compromised.
 +
        </p>
 +
        <br>
 +
        <p>
 +
          All in all, the XylR*-overexpressing xylose utilizing module is likely to be functioning as intended, but further tests would be necessary. To obtain a more definitive indication of glucose and xylose utilization, HPLC analysis could be carried out on the medium. If xylose utilization was not the contributing factor to enhanced growth, further tests could be conducted to elucidate the mechanism.
 +
        </p>
 +
        <br>
 +
         <p>
 +
          On the other hand, if XylR* overexpression does increase xylose utilization as expected, there are plenty of possibilities to be explored!  To further demonstrate the applicability of our xylose utilizing module, crude lignocellulosic waste extracts can be fed as well. We can co-transform our current module with our biosynthesis plasmids, demonstrating the production of naringenin or even luteolin from xylose and bringing us closer to our final system. By varying inducer concentrations, the optimal level of XylR* expression can be determined. As such, other strategies could be employed to attain the level of expression without using chemical inducers - one of the key objectives of Coup Dy'état. This includes constitutive or light-regulated expression, or even metabolic engineering. More excitingly, a xylose-based nutrient-sensing module could conceivably be developed, allowing for dynamic regulation via light induction!
 +
        </p>
 
             </div>
 
             </div>
 
             <button class="accordion-closer">CLOSE</button>
 
             <button class="accordion-closer">CLOSE</button>
Line 105: Line 136:
 
<div class="reference">
 
<div class="reference">
  
[1] Goodacre, D. (2018). Faking Flavours. Lateral Magazine, Physical Science (28). Retrieved from http://www.lateralmag.com/articles/issue-28/faking-flavours <br><br>
 
[2] Geddes, C. C., Nieves, I. U., & Ingram, L. O. (2011). Advances in ethanol production. Current opinion in biotechnology, 22(3), 312-319.<br><br>
 
[3] World Wildlife Fund. (2015). Sugarcane Farming's Toll on the Environment. World Wildlife Magazine, Summer 2015. Retrieved from https://www.worldwildlife.org/magazine/issues/summer-2015/articles/sugarcane-farming-s-toll-on-the-environment<br><br>
 
[4] Sudiyani, Y., Styarini, D., Triwahyuni, E., Sembiring, K. C., Aristiawan, Y., Abimanyu, H., & Han, M. H. (2013). Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot–scale unit. Energy Procedia, 32, 31-38.<br><br>
 
[5] Sievert, C., Nieves, L. M., Panyon, L. A., Loeffler, T., Morris, C., Cartwright, R. A., & Wang, X. (2017). Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proceedings of the National Academy of Sciences, 114(28), 7349-7354.<br><br>
 
[6] Zhang, W., Liu, H., Li, X., Liu, D., Dong, X. T., Li, F. F., ... & Yuan, Y. J. (2017). Production of naringenin from D‐xylose with co‐culture of E. coli and S. cerevisiae. Engineering in Life Sciences, 17(9), 1021-1029.<br><br>
 
[7] Marín, L., Gutiérrez-del-Río, I., Yagüe, P., Manteca, Á., Villar, C. J., & Lombó, F. (2017). De novo biosynthesis of apigenin, luteolin, and eriodictyol in the actinomycete Streptomyces albus and production improvement by feeding and spore conditioning. Frontiers in microbiology, 8, 921.<br><br>
 
[8] Ganesan, V., Li, Z., Wang, X., & Zhang, H. (2017). Heterologous biosynthesis of natural product naringenin by co-culture engineering. Synthetic and systems biotechnology, 2(3), 236-242.<br><br>
 
[9] Yeong, C. J. (2012). Discovery and development of novel anti-microbial therapeutics (Doctoral dissertation).<br><br>
 
[10] Grovier, K. (2018). The murky history of the colour yellow. BBC. Retrieved from http://www.bbc.com/culture/story/20180906-did-animal-cruelty-create-indian-yellow<br><br>
 
[11]  Vorkamp, K. (2016). An overlooked environmental issue? A review of the inadvertent formation of PCB-11 and other PCB congeners and their occurrence in consumer products and in the environment. Science of the Total Environment, 541, 1463-1476.<br><br>
 
[12] Singh, H. B., & Kumar, A. B. (2014). Handbook of natural dyes and pigments. Woodhead Publishing India Pvt Limited.<br><br>
 
[13] Marín, L., Gutiérrez-del-Río, I., Yagüe, P., Manteca, Á., Villar, C. J., & Lombó, F. (2017). De novo biosynthesis of apigenin, luteolin, and eriodictyol in the actinomycete Streptomyces albus and production improvement by feeding and spore conditioning. Frontiers in microbiology, 8, 921.<br><br>
 
[14] Lopez, P. J., Marchand, I., Joyce, S. A., & Dreyfus, M. (1999). The C‐terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Molecular microbiology, 33(1), 188-199.<br><br>
 
[15] Leonard, E., Yan, Y., Fowler, Z. L., Li, Z., Lim, C. G., Lim, K. H., & Koffas, M. A. (2008). Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Molecular pharmaceutics, 5(2), 257-265.<br><br>
 
[16] Zuo, J., & Chua, N. (2000). Chemical-inducible systems for regulated expression of plant genes. Current Opinion In Biotechnology, 11(2), 146-151.<br><br>
 
[17] Dvorak, P., Chrast, L., Nikel, P. I., Fedr, R., Soucek, K., Sedlackova, M., . . . Damborsky, J. (2015). Exacerbation of substrate toxicity by IPTG in escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microbial Cell Factories, 14(1), 201-201.<br><br>
 
18] Politi, N., Pasotti, L., Zucca, S., Casanova, M., Micoli, G., Cusella De Angelis, Maria Gabriella, & Magni, P. (2014). Half-life measurements of chemical inducers for recombinant gene expression. Journal of Biological Engineering, 8(1), 5-5.<br><br>
 
[19] Tischer, D., & Weiner, O. D. (2014). Illuminating cell signalling with optogenetic tools. Nature Reviews. Molecular Cell Biology, 15(8), 551-558. <br><br>
 
[20] Zhang, K., & Cui, B. (2015). Optogenetic control of intracellular signaling pathways. Trends in biotechnology, 33(2), 92-100.<br><br>
 
[21] Jayaraman, P., Devarajan, K., Chua, T. K., Zhang, H., Gunawan, E., & Poh, C. L. (2016). Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic acids research, 44(14), 6994-7005.<br><br>
 
[22] Zhao, E. M., Zhang, Y., Mehl, J., Park, H., Lalwani, M. A., Toettcher, J. E., & Avalos, J. L. (2018). Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature, 555(7698), 683.<br><br>
 
[23] Henzler, H. J., Schügerl, K., Kretzmer, G., Kieran, P. M., MacLoughlin, P. F., Malone, D. M., ... & Yim, S. S. (Eds.). (2000). Influence of stress on cell growth and product formation (Vol. 67). Springer Science & Business Media.<br><br>
 
[24] Gasser, B., Saloheimo, M., Rinas, U., Dragosits, M., Rodríguez-Carmona, E., Baumann, K., ... & Porro, D. (2008). Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microbial cell factories, 7(1), 11.<br><br>
 
[25] Ceroni, F., Boo, A., Furini, S., Gorochowski, T. E., Borkowski, O., Ladak, Y. N., ... & Ellis, T. (2018). Burden-driven feedback control of gene expression. Nature methods, 15(5), 387.<br><br>
 
[26] Lalwani, M. A., Zhao, E. M., & Avalos, J. L. (2018). Current and future modalities of dynamic control in metabolic engineering. Current opinion in biotechnology, 52, 56-65.<br><br>
 
[27] Lo, T. M., Chng, S. H., Teo, W. S., Cho, H. S., & Chang, M. W. (2016). A two-layer gene circuit for decoupling cell growth from metabolite production. Cell systems, 3(2), 133-143.<br><br>
 
[28] Milias-Argeitis, A., Rullan, M., Aoki, S. K., Buchmann, P., & Khammash, M. (2016). Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nature communications, 7, 12546.<br><br>
 
[29] Chen, S., Harrigan, P., Heineike, B., Stewart-Ornstein, J., & El-Samad, H. (2013). Building robust functionality in synthetic circuits using engineered feedback regulation. Current opinion in biotechnology, 24(4), 790-796.<br><br>
 
  
 
</div>
 
</div>

Revision as of 15:11, 14 October 2018

CONNECT WITH US
Results


ILLUSTRATION (in progress)

Click on each segment of the illustration to discover what the results we have for each components of our system!


Our design infographic

Glucose-xylose growth experiments

To investigate the effectiveness of our xylose-utilizing module, we transformed the plasmid containing the native XylR gene and that containing the mutated XylR (XylR*) into E. coli BL21*. Since XylR acts as a co-activator of the xylose operon, we hypothesized that overexpressing native XylR would also help to enhance xylose utilization. Also, the effect would be more pronounced when XylR* was expressed, as it has significantly higher binding affinity. BL21*, BL21*-XylR, and BL21*-XylR* were grown in 0.2% glucose, 0.2% xylose, as well as a mixture of 0.1% glucose and 0.1% xylose. Growth, as an indicator of sugar substrate utilization, was measured via absorbance at 600nm over 8-hours in a microplate reader.


To verify the expression of XylR and XylR*, SDS-PAGE was conducted for samples taken after induction. Thick bands at approximately 45kDa were observed for induced cells, with no corresponding band for the WT and uninduced samples, showing that XylR and XylR* are overexpressed respectively (Figure 1).


Our growth experiments displayed rather interesting results. BL21*-XylR* had noticeably the highest growth in all three conditions, while BL21*-XylR displayed considerably little or even no growth (Figure 2a, b, and c). Most importantly, overexpressing XylR* seemed to increase xylose utilization, where the growth of Bl21*-XylR* is significantly higher than the wild-type in xylose (Figure 2e), as well as in a mixture of glucose and xylose (Figure 2f). Our xylose-utilization module likely works!


Surprisingly, XylR* also appeared to enhance growth in glucose (Figure 1a). We expected it to have similar growth as the wild-type instead. Hence, it is difficult to ascertain whether the augmented growth in xylose is a result of improved utilization or other mechanisms, which is possible due to XylR’s role as a metabolic regulatory factor.


Nonetheless, BL21*-XylR* exhibited comparable growth rates in glucose and the mixture of glucose and xylose, suggesting co-utilization of sugar substrates occured (Figure 1f). In contrast, this was not observed in the wild-type, where having a mixture of sugars resulted in lower growth rates (Figure 1d). This is significant as we are one step closer to our vision of utilizing lignocellulosic waste as feedstock, which requires simultaneous utilization of glucose and xylose.


As for BL21*-XylR, there was little to no growth observed regardless of the sugar substrates (Figure 2e). Not only does XylR overexpression fail to improve xylose utilization as hypothesized, there appears to be a growth inhibitory effect. It is possible that other metabolic processes were compromised.


All in all, the XylR*-overexpressing xylose utilizing module is likely to be functioning as intended, but further tests would be necessary. To obtain a more definitive indication of glucose and xylose utilization, HPLC analysis could be carried out on the medium. If xylose utilization was not the contributing factor to enhanced growth, further tests could be conducted to elucidate the mechanism.


On the other hand, if XylR* overexpression does increase xylose utilization as expected, there are plenty of possibilities to be explored! To further demonstrate the applicability of our xylose utilizing module, crude lignocellulosic waste extracts can be fed as well. We can co-transform our current module with our biosynthesis plasmids, demonstrating the production of naringenin or even luteolin from xylose and bringing us closer to our final system. By varying inducer concentrations, the optimal level of XylR* expression can be determined. As such, other strategies could be employed to attain the level of expression without using chemical inducers - one of the key objectives of Coup Dy'état. This includes constitutive or light-regulated expression, or even metabolic engineering. More excitingly, a xylose-based nutrient-sensing module could conceivably be developed, allowing for dynamic regulation via light induction!

xxx

xxx

xxx

xxx

xxx


References