Difference between revisions of "Team:Tacoma RAINmakers/Description"

 
Line 40: Line 40:
 
      
 
      
 
      
 
      
<br> <br> Tacoma RAINmakers seek to revolutionize toxin detection by engineering an affordable and simple biosensor that alerts the user of arsenic contamination. Our biosensor is user-friendly by design and will not require hazardous chemical reagents. Synthetic biology is the fundamental tenet of the RAINmaker sensor. By employing an arsenic regulatory gene (ArsR) native to E. coli, the RAINmakers are able to identify the presence of arsenic in the environment. ArsR functions as a repressor for a chromoprotein reporter complex. In the presence of arsenic ions (i.e. arsenate, arsenite), our arsenic regulator protein will bind to the toxin, change conformation, and allow expression of our indicator. As mentioned previously, the RAINmakers will be employing chromoproteins, namely amilCP and spisPink. Both of these reporters are non-fluorescent color-producing proteins native to coral. The biosensor will function in vitro; our circuit DNA material will be pipetted and lyophilized into a paper ticket.  
+
<br> <br> Tacoma RAINmakers seek to revolutionize toxin detection by engineering an affordable and simple biosensor that alerts the user of arsenic contamination. Our biosensor is user-friendly by design and will not require hazardous chemical reagents. Synthetic biology is the fundamental tenet of the RAINmaker sensor. By employing an arsenic regulatory gene (ArsR) native to <i>E. coli</i>, the RAINmakers are able to identify the presence of arsenic in the environment. ArsR functions as a repressor for a chromoprotein reporter complex. In the presence of arsenic ions (i.e. arsenate, arsenite), our arsenic regulator protein will bind to the toxin, change conformation, and allow expression of our indicator. As mentioned previously, the RAINmakers will be employing chromoproteins, namely amilCP and spisPink. Both of these reporters are non-fluorescent color-producing proteins native to coral. The biosensor will function <i>in vitro</i>; our circuit DNA material will be pipetted and lyophilized into a paper ticket.  
 
      
 
      
 
<br> <br> Ultimately, this sensor will function as a qualitative test for arsenic that will be simple and inexpensive enough for layman use. The long-term goal is to improve community understanding of this ecological issue and bring an inexpensive tool to the hands of Tacoma and the world in a united effort to solve heavy metal contamination.</p>
 
<br> <br> Ultimately, this sensor will function as a qualitative test for arsenic that will be simple and inexpensive enough for layman use. The long-term goal is to improve community understanding of this ecological issue and bring an inexpensive tool to the hands of Tacoma and the world in a united effort to solve heavy metal contamination.</p>
Line 46: Line 46:
 
     </div>
 
     </div>
 
      
 
      
<!--
 
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
 
  
</div>
 
 
 
 
<div class="column two_thirds_size">
 
<h3>What should this page contain?</h3>
 
<ul>
 
<li> A clear and concise description of your project.</li>
 
<li>A detailed explanation of why your team chose to work on this particular project.</li>
 
<li>References and sources to document your research.</li>
 
<li>Use illustrations and other visual resources to explain your project.</li>
 
</ul>
 
</div>
 
 
<div class="column third_size" >
 
<div class="highlight decoration_A_full">
 
<h3>Inspiration</h3>
 
<p>See how other teams have described and presented their projects: </p>
 
 
<ul>
 
<li><a href="https://2016.igem.org/Team:Imperial_College/Description">2016 Imperial College</a></li>
 
<li><a href="https://2016.igem.org/Team:Wageningen_UR/Description">2016 Wageningen UR</a></li>
 
<li><a href="https://2014.igem.org/Team:UC_Davis/Project_Overview"> 2014 UC Davis</a></li>
 
<li><a href="https://2014.igem.org/Team:SYSU-Software/Overview">2014 SYSU Software</a></li>
 
</ul>
 
</div>
 
</div>
 
 
 
 
 
<div class="column two_thirds_size" >
 
<h3>Advice on writing your Project Description</h3>
 
 
<p>
 
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be concise, accurate, and unambiguous in your achievements.
 
</p>
 
 
</div>
 
 
<div class="column third_size">
 
<h3>References</h3>
 
<p>iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.</p>
 
 
</div>
 
 
 
 
 
 
-->
 
 
</html>
 
</html>

Latest revision as of 19:02, 14 October 2018

Team:TacomaRAINmakers/Notebook - 2017.igem.org

Team:ECUST/Lab/Notebook

E-coli Diagram

Project Abstract

In Tacoma, Washington, arsenic contamination from the ASARCO copper smelter continues to devastate community soil and water. Even small amounts of arsenic pose a threat to long-term community health, causing cancer and child developmental disability. Tacoma and the state of Washington have spent more than 62 million dollars over 18 years testing in the region, with efforts still underway.

Tacoma RAINmakers seek to revolutionize toxin detection by engineering an affordable and simple biosensor that alerts the user of arsenic contamination. Our biosensor is user-friendly by design and will not require hazardous chemical reagents. Synthetic biology is the fundamental tenet of the RAINmaker sensor. By employing an arsenic regulatory gene (ArsR) native to E. coli, the RAINmakers are able to identify the presence of arsenic in the environment. ArsR functions as a repressor for a chromoprotein reporter complex. In the presence of arsenic ions (i.e. arsenate, arsenite), our arsenic regulator protein will bind to the toxin, change conformation, and allow expression of our indicator. As mentioned previously, the RAINmakers will be employing chromoproteins, namely amilCP and spisPink. Both of these reporters are non-fluorescent color-producing proteins native to coral. The biosensor will function in vitro; our circuit DNA material will be pipetted and lyophilized into a paper ticket.

Ultimately, this sensor will function as a qualitative test for arsenic that will be simple and inexpensive enough for layman use. The long-term goal is to improve community understanding of this ecological issue and bring an inexpensive tool to the hands of Tacoma and the world in a united effort to solve heavy metal contamination.