Difference between revisions of "Template:BOKU-Vienna/Model"

Line 4: Line 4:
 
<p>This simulation of our model shows that the toggle switch can be switched between two stable states of gene expression (&quot;ON&quot; and &quot;OFF&quot;) endlessly by temporarly increasing only a single chemical species as a trigger.</p>
 
<p>This simulation of our model shows that the toggle switch can be switched between two stable states of gene expression (&quot;ON&quot; and &quot;OFF&quot;) endlessly by temporarly increasing only a single chemical species as a trigger.</p>
 
<!--[To interactive Simulation](/Simulation_Model.html)-->
 
<!--[To interactive Simulation](/Simulation_Model.html)-->
<p></br></p>
+
<p><br></p>
 
<p><div id="modelSlider" class="carousel slide" data-ride="carousel">
 
<p><div id="modelSlider" class="carousel slide" data-ride="carousel">
 
     <ol class="carousel-indicators">
 
     <ol class="carousel-indicators">
Line 16: Line 16:
 
     <div class="carousel-inner">
 
     <div class="carousel-inner">
 
         <div class="carousel-item active">
 
         <div class="carousel-item active">
             <img class="d-block w-100" src="/images/model/model-1.jpg" alt="First slide">
+
             <img class="d-block w-100" src="https://static.igem.org/mediawiki/2018/1/17/T--BOKU-Vienna--2018_model-1.jpg" alt="First slide">
 
             <div class="slider-text">
 
             <div class="slider-text">
 
                 <p>This is a complete representation of the model with all reactions and species involved. It further includes important constants and gives hints at the type of interactions. At first sight this might look rather complex, but it can be broken down into smaller pieces. Our model is divided into 4 Independent sections:</p>
 
                 <p>This is a complete representation of the model with all reactions and species involved. It further includes important constants and gives hints at the type of interactions. At first sight this might look rather complex, but it can be broken down into smaller pieces. Our model is divided into 4 Independent sections:</p>
Line 27: Line 27:
 
         </div>
 
         </div>
 
         <div class="carousel-item">
 
         <div class="carousel-item">
             <img class="d-block w-100" src="/images/model/model-2.jpg" alt="Second slide">
+
             <img class="d-block w-100" src="https://static.igem.org/mediawiki/2018/d/d3/T--BOKU-Vienna--2018_model-2.jpg" alt="Second slide">
 
             <div class="slider-text row">
 
             <div class="slider-text row">
 
                 <div class="col-md-9">
 
                 <div class="col-md-9">
Line 34: Line 34:
 
                 </div>
 
                 </div>
 
                 <div class="col-md-3">
 
                 <div class="col-md-3">
                     <img class="w-100" src="/images/model/eq1.png" alt="Equation One" />
+
                     <img class="w-100" src="https://static.igem.org/mediawiki/2018/8/81/T--BOKU-Vienna--2018_eq1.png" alt="Equation One">
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 
         <div class="carousel-item">
 
         <div class="carousel-item">
             <img class="d-block w-100" src="/images/model/model-3.jpg" alt="Third slide">
+
             <img class="d-block w-100" src="https://static.igem.org/mediawiki/2018/3/30/T--BOKU-Vienna--2018_model-3.jpg" alt="Third slide">
 
             <div class="slider-text row">
 
             <div class="slider-text row">
 
                 <div class="col-md-3">
 
                 <div class="col-md-3">
                     <img class="w-100" src="/images/model/eq2.png" alt="Equation Two" />
+
                     <img class="w-100" src="https://static.igem.org/mediawiki/2018/c/c7/T--BOKU-Vienna--2018_eq2.png" alt="Equation Two">
 
                 </div>
 
                 </div>
 
                 <div class="col-md-9">
 
                 <div class="col-md-9">
Line 52: Line 52:
 
         </div>
 
         </div>
 
         <div class="carousel-item">
 
         <div class="carousel-item">
             <img class="d-block w-100" src="/images/model/model-4.jpg" alt="Fourth slide">
+
             <img class="d-block w-100" src="https://static.igem.org/mediawiki/2018/9/92/T--BOKU-Vienna--2018_model-4.jpg" alt="Fourth slide">
 
             <div class="slider-text">
 
             <div class="slider-text">
 
                 <p>After our activator ON was formed it will bind to its target DNA sequence and will live up to his name, activating <i>(green)</i> the expression of <b>gON</b>. Since we know that our repressor OFF is constantly trying to shutdown gONs production, we need enough activator ON to compete against. This is a critical point of our system. However in reality repressor and activator do not act on the same gene, so gON should always be expressed in the presence of activator ON.</p>
 
                 <p>After our activator ON was formed it will bind to its target DNA sequence and will live up to his name, activating <i>(green)</i> the expression of <b>gON</b>. Since we know that our repressor OFF is constantly trying to shutdown gONs production, we need enough activator ON to compete against. This is a critical point of our system. However in reality repressor and activator do not act on the same gene, so gON should always be expressed in the presence of activator ON.</p>
Line 59: Line 59:
 
         </div>
 
         </div>
 
         <div class="carousel-item">
 
         <div class="carousel-item">
             <img class="d-block w-100" src="/images/model/model-5.jpg" alt="Third slide">
+
             <img class="d-block w-100" src="https://static.igem.org/mediawiki/2018/f/fe/T--BOKU-Vienna--2018_model-5.jpg" alt="Third slide">
 
             <div class="slider-text">
 
             <div class="slider-text">
 
                 <p>Now that we have gON in the system it can bind to dCas9 and form an initial collision complex <b>dCas9.gON<sup>cc</sup></b>, which more slowly then undergoes a transition to the active <b>dCas9.gON</b> complex, like described by Raper et al. (2018). Both reactions are reversible and follow the mass action law. The dCas) in the active complex can then be guided by gON to its DNA target site <b>gtON</b>, which will lead to the trimeric <b>repressor ON</b> complex. Repressor ON is a rather stable complex indicated by <b>k<sub>7</sub></b> &gt;&gt; <b>k<sub>-7</sub></b></p>
 
                 <p>Now that we have gON in the system it can bind to dCas9 and form an initial collision complex <b>dCas9.gON<sup>cc</sup></b>, which more slowly then undergoes a transition to the active <b>dCas9.gON</b> complex, like described by Raper et al. (2018). Both reactions are reversible and follow the mass action law. The dCas) in the active complex can then be guided by gON to its DNA target site <b>gtON</b>, which will lead to the trimeric <b>repressor ON</b> complex. Repressor ON is a rather stable complex indicated by <b>k<sub>7</sub></b> &gt;&gt; <b>k<sub>-7</sub></b></p>
Line 65: Line 65:
 
         </div>
 
         </div>
 
         <div class="carousel-item">
 
         <div class="carousel-item">
             <img class="d-block w-100" src="/images/model/model-6.jpg" alt="Third slide">
+
             <img class="d-block w-100" src="https://static.igem.org/mediawiki/2018/7/7b/T--BOKU-Vienna--2018_model-6.jpg" alt="Third slide">
 
             <div class="slider-text">
 
             <div class="slider-text">
 
                 <p>Since the target site lies in the promoter region of a gene coding for <b>gOFF</b>. The repressor ON will hinder the production of gOFF, just like the repressor OFF did to gON.</p>
 
                 <p>Since the target site lies in the promoter region of a gene coding for <b>gOFF</b>. The repressor ON will hinder the production of gOFF, just like the repressor OFF did to gON.</p>
Line 72: Line 72:
 
         </div>
 
         </div>
 
     </div>
 
     </div>
     <a class="carousel-control-prev" href="#modelSlider" role="button" data-slide="prev">
+
     <a class="carousel-control-prev" href="https://2018.igem.org/Team:BOKU-Vienna#modelSlider" role="button" data-slide="prev">
 
         <span aria-hidden="true"><i class="fas fa-angle-left"></i></span>
 
         <span aria-hidden="true"><i class="fas fa-angle-left"></i></span>
 
         <span class="sr-only">Previous</span>
 
         <span class="sr-only">Previous</span>
 
     </a>
 
     </a>
     <a class="carousel-control-next" href="#modelSlider" role="button" data-slide="next">
+
     <a class="carousel-control-next" href="https://2018.igem.org/Team:BOKU-Vienna#modelSlider" role="button" data-slide="next">
 
         <span aria-hidden="true"><i class="fas fa-angle-right"></i></span>
 
         <span aria-hidden="true"><i class="fas fa-angle-right"></i></span>
 
         <span class="sr-only">Next</span>
 
         <span class="sr-only">Next</span>
 
     </a>
 
     </a>
 
</div>
 
</div>
</br></p>
+
<br></p>
 
<p>A simulation of our model shows that the toggle switch can be switched between two stable states of gene expression (&quot;ON&quot; and &quot;OFF&quot;) endlessly by temporarly increasing only a single chemical species as a trigger. We have shown that this behaviour is observable over a wide range of different parameters. We have taken results and hints from our model and used them in our design process, such as for selecting promoters for our genes, designing our synthetic regulatory regions and using certain ligand-receptor pathways. Furthermore, we have compared data of the simulation to actual results obtained in the wet lab.</p>
 
<p>A simulation of our model shows that the toggle switch can be switched between two stable states of gene expression (&quot;ON&quot; and &quot;OFF&quot;) endlessly by temporarly increasing only a single chemical species as a trigger. We have shown that this behaviour is observable over a wide range of different parameters. We have taken results and hints from our model and used them in our design process, such as for selecting promoters for our genes, designing our synthetic regulatory regions and using certain ligand-receptor pathways. Furthermore, we have compared data of the simulation to actual results obtained in the wet lab.</p>
<p></br></p>
+
<p><br></p>
 
<h3 id="reference">Reference</h3>
 
<h3 id="reference">Reference</h3>
 
<p>Raper, Austin T.; Stephenson, Anthony A.; Suo, Zucai (2018): Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9. In: Journal of the American Chemical Society 140 (8), S. 2971–2984. DOI: 10.1021/jacs.7b13047</p>
 
<p>Raper, Austin T.; Stephenson, Anthony A.; Suo, Zucai (2018): Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9. In: Journal of the American Chemical Society 140 (8), S. 2971–2984. DOI: 10.1021/jacs.7b13047</p>

Revision as of 10:24, 15 October 2018

Model

We have created a complete model of our system involving 22 chemical species participating in 32 biochemical reactions. Our model consists of a toggle switch which is controled by either two ligand-receptor pathways or more directly by the addition of guide RNA, like in our liposome fusion experiments.

ON and OFF and ON and OFF and ON again...

This simulation of our model shows that the toggle switch can be switched between two stable states of gene expression ("ON" and "OFF") endlessly by temporarly increasing only a single chemical species as a trigger.



A simulation of our model shows that the toggle switch can be switched between two stable states of gene expression ("ON" and "OFF") endlessly by temporarly increasing only a single chemical species as a trigger. We have shown that this behaviour is observable over a wide range of different parameters. We have taken results and hints from our model and used them in our design process, such as for selecting promoters for our genes, designing our synthetic regulatory regions and using certain ligand-receptor pathways. Furthermore, we have compared data of the simulation to actual results obtained in the wet lab.


Reference

Raper, Austin T.; Stephenson, Anthony A.; Suo, Zucai (2018): Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9. In: Journal of the American Chemical Society 140 (8), S. 2971–2984. DOI: 10.1021/jacs.7b13047