Difference between revisions of "Template:Groningen/Human Practices Silver"

Line 26: Line 26:
 
</p>
 
</p>
  
 
+
<div class="clear"></div>
 
<h1 id="carbonfootprint">Carbon Footprint Analysis</h1>
 
<h1 id="carbonfootprint">Carbon Footprint Analysis</h1>
 
<p>We are facing an huge increase in global population, from the current world population of f 7.6 billion to an expected 9.8 billion in 2050[<a target="_blank" href="https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html">1</a>]. This projected increase in global population leads to an increase in both increased food and energy consumption, which in turn in is associated with the release of larger amounts of greenhouse gasses the atmosphere. Right now, we live in a plastic generation. The global production and consumption of plastics have been on the rise for over 50 years now, reaching a plastic consumption of 297.5 million tons by the end of 2015[<a target="_blank" href="http://www.worldwatch.org/global-plastic-production-rises-recycling-lags-0">2</a>]. Plastic products from the petrochemical industries have a high carbon footprint (Boonniteewanich et al,. 2014). The combination of global population increase and a mass consumed non-eco-friendly product, in the form of petroleum-based plastics, could be disastrous. This is one of the reasons that the Groningen iGEM team’s project attempts to produce (bio)styrene, a building block for many plastics, from cellulose as an alternative to substitute the petroleum-based styrene. In this section we have carried out a partial Life Cycle Assessment (LCA) analysis to identify the environmental impact of both alternatives of petroleum-based styrene and bio-based styrene. The main purpose is to provide an insight of environmental burden that is caused by the worldwide styrene industry in terms of carbon dioxide equivalent emissions (CO2-e) and to showcase our greener alternative.</p>
 
<p>We are facing an huge increase in global population, from the current world population of f 7.6 billion to an expected 9.8 billion in 2050[<a target="_blank" href="https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html">1</a>]. This projected increase in global population leads to an increase in both increased food and energy consumption, which in turn in is associated with the release of larger amounts of greenhouse gasses the atmosphere. Right now, we live in a plastic generation. The global production and consumption of plastics have been on the rise for over 50 years now, reaching a plastic consumption of 297.5 million tons by the end of 2015[<a target="_blank" href="http://www.worldwatch.org/global-plastic-production-rises-recycling-lags-0">2</a>]. Plastic products from the petrochemical industries have a high carbon footprint (Boonniteewanich et al,. 2014). The combination of global population increase and a mass consumed non-eco-friendly product, in the form of petroleum-based plastics, could be disastrous. This is one of the reasons that the Groningen iGEM team’s project attempts to produce (bio)styrene, a building block for many plastics, from cellulose as an alternative to substitute the petroleum-based styrene. In this section we have carried out a partial Life Cycle Assessment (LCA) analysis to identify the environmental impact of both alternatives of petroleum-based styrene and bio-based styrene. The main purpose is to provide an insight of environmental burden that is caused by the worldwide styrene industry in terms of carbon dioxide equivalent emissions (CO2-e) and to showcase our greener alternative.</p>

Revision as of 16:27, 15 October 2018

Human Practices Silver

The starting point of our project was a look at the world as it is. We have marvelous technologies which make our lives better, things that were problems 100 years ago we can't think of anymore and all information can be shared faster than ever. However, there is also something terribly wrong with this world. Temperature is rising, animals go extinct and the price of our advancement is pulling fossil fuels out of the earth that have been there for millions of years.

We love all these advancements. We would lie if we say we didn't. But we do want to solve the downside of our development. Therefore we looked into a surprising polluter: plastic. Plastic is a wonderful product and these days it is impossible to live without it. Therefore we looked into the production of plastic. Can we make clean plastic, which does not pollute the earth? And what should we do with this plastic? On the Human Practices pages you'll found where our journey brought us; from schools to festivals; from start-ups to multinationals. We started off by calculating the Carbon Footprint of styrene.

Carbon Footprint Analysis

We are facing an huge increase in global population, from the current world population of f 7.6 billion to an expected 9.8 billion in 2050[1]. This projected increase in global population leads to an increase in both increased food and energy consumption, which in turn in is associated with the release of larger amounts of greenhouse gasses the atmosphere. Right now, we live in a plastic generation. The global production and consumption of plastics have been on the rise for over 50 years now, reaching a plastic consumption of 297.5 million tons by the end of 2015[2]. Plastic products from the petrochemical industries have a high carbon footprint (Boonniteewanich et al,. 2014). The combination of global population increase and a mass consumed non-eco-friendly product, in the form of petroleum-based plastics, could be disastrous. This is one of the reasons that the Groningen iGEM team’s project attempts to produce (bio)styrene, a building block for many plastics, from cellulose as an alternative to substitute the petroleum-based styrene. In this section we have carried out a partial Life Cycle Assessment (LCA) analysis to identify the environmental impact of both alternatives of petroleum-based styrene and bio-based styrene. The main purpose is to provide an insight of environmental burden that is caused by the worldwide styrene industry in terms of carbon dioxide equivalent emissions (CO2-e) and to showcase our greener alternative.

Analysis

For our LCA analysis , we have set the study boundary to what is called the ‘cradle to gate’ analysis instead of a full LCA which is called the ‘cradle to grave’ analysis (see figure 1). The reason for this is twofold. First of all, we discovered the LCA analysis in a late phase of the project. Therefore, so we did not have enough time to do the complete quantitative analysis because, in that case you have to look at all the inputs and outputs of equivalent CO2 of feedstock and energy, for each stage of our process, which is a complex task and in some cases that information is not even freely available. However, the main reason we choose to use the cradle to gate analysis over the cradle to grave is that fact that it is the only part that matters, since we will produce the exact same product, namely styrene. The second part of the life-cycle will be exactly the same. Therefore, the only part that matters is from the feedstock you use and the energy required to the product, in our case styrene.

Figure 1. Figure retrieved from: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-20192013000200001

Contacts

In order to evaluate the environmental impact of the two ways of producing styrene, we met with multiple experts from the University of Groningen, and with experts from various start-ups and companies. First of all, Tjerk Douma, a master student whose specialized in sustainability and did a major part of the analysis. We also met with prof. dr. F. Francesco Picchioni, of the University of Groningen, head of the Product technology department - Engineering and Technology Institute Groningen. Moreover, we met with the start-up companies BioBTX and Zernike Advanced Processing and the companies CE Delft and Avantium.

Conclusions

  1. Toilet paper waste is used as the primary raw material in the biorefinery to produce styrene.
  2. Is it possible to take that percentage and use it in the biorefinery? The composition of cellulose is the determining factor which would need to be examined. If the raw materials were made up of pure biomass then the implications to the environment would be proportionally greater. Therefore locally sourced biomass, which does not impact on agricultural land, is the preferred option.
  3. Currently the biorefinery is an energy and chemically intensive process. The amounts needed to convert x kg/h of raw materials into glucose is substantial.

Safety

Safety should be a cornerstone of every project, taken into account during every phase. For this reason the Dutch Governmental Institute for Public Health and Environment (RIVM) has challenged us to participate in their Safe-by-Design assignment. The goal of this assignment is to demonstrate how our team has taken safety into account throughout our project, in every aspect. Of particular importance is the human practices part, where our ideas get taken outside the lab and into the world surrounding us. Of special interest is the iterative process, where the direction of the project is adjusted based on input from stakeholders and experts in relevant fields, safety and ethical guidelines, and considerations regarding the upscaling of our project. We have had 2 Skype meetings with staff members of the RIVM, and using their tips and guidance we made some more adjustment. The final product, an infographical timeline describing the iterative process of our project, is pictured below.