Difference between revisions of "Template:Groningen/Human Practices"

Line 68: Line 68:
 
<h4>Katja Loos</h4>
 
<h4>Katja Loos</h4>
 
<p>
 
<p>
A very important part in our project was the decision on what we should create from waste. Katja Loos had a huge influence as she explained that bio degradable plastics are not as degradable as people think. See <a target="_blank" href="Human_Practices#katjaloos">here</a> what she told us.   
+
A very important part in our project was the decision on what we should create from waste. Katja Loos had a huge influence as she explained that bio degradable plastics are not as degradable as people think. See <a href="Human_Practices#katjaloos">here</a> what she told us.   
 
</p>
 
</p>
 
</div>
 
</div>

Revision as of 16:37, 15 October 2018

Human Practices

For the StyGreen project, Human Practices was not a box that needed to be filled. It was a tool to integrate our project in the real world. As we are producing plastics, from the beginning Human Practices was very important, as it is a very sensitive subject. However, by talking to a lot of stakeholders, from suppliers to buyers and start-ups to multinationals, we have gained a lot of insights of how the plastic world works, and how we fit in this picture.

As Human Practices is not an binary subject, but something that you are working on the whole day, we gave a summary of the biggest influences on the design of our project. However, a lot of insight we had as well by talking to friends, family and complete strangers. One of the first questions always was: “why more plastics?”. We have thought about this a lot, and thought about what is good and what is bad about plastics. We looked into ‘biodegradable’ plastics , as well as chemically created bio-plastics.

The Human Practices Tree

To get a good overview, we invite you to have a look at our thought tree. This tree catched the new light in its leaves, and by choosing the right and wrong from it grew into a great tree. Also we had great conversations on how to grow the tree bigger if iGEM is ended. How to scale up the product, and which safety procedures we had to keep in mind.

  • Our interactive timeline

    Click on the icons in the timeline, and find out about all the insights we gained from our stakeholders and how the dialogues shaped our project.

Stakeholder Analysis

Porter Analysis

Too analyze our position in the market, and find our opportunities we did a five forces analysis. Here we looked at the strengths of our buyers, suppliers, substitutes, competition and new entrants. We found that we have power over our suppliers as there are a lot of ways we can find cellulose. However, for the buyers the scale is very important, which is why the buyers have a very high switching cost. This can be a threat to our technology. For new entrants, a lot of prior knowledge is needed to enter the market, which is a strength for us. The substitutes produce different kinds of plastics, but as the plastic market is so big, and so specific, this is not much of a threat.

Meetings with companies

EV Biotech

The young, Groningen based biotech startup EV Biotech offered to collaborate with us in many aspects. Represented by Linda Dijkshoorn, Agnieszka Wegryzn and Sergey Lunev, EVBiotech was present at multiple meetings with our subgroups. Linda had great tips about structure and organisation, and helped us to set up a SCRUM way of working. Agnieszka is an expert on modelling and helped a great deal with the flux balance analysis. Sergey helped us to set up an idea to create a continuous bioreactor. Over the summer we had ten meeting with them to discuss our progress on the project. Next to technical help, we also had a great deal of help by accessing the big network of EV Biotech. As a special honor, we were invited to the official opening of the new EV Biotech office. Here we had the possibility to pitch our project to several experienced people in the business.

NRK: Martin van Dord (24th July 2018)

NRK is the Dutch Federation of plastic & rubber converters, with 20 different sub associations and 400 member companies. We talked to Martin van Dord, innovation consultant at NRK and Topsector Chemie. According the NRK facts and figures 2017 the use of bioplastics is ca 20 kiloton (1%) of the 2.000 kton used (2017). Main problem for the use of bioplastics is the price issue. The price is up twice as high as virgin plastics. In order to contribute to the goals of the Climat Agreement of Paris, the objective is to lift this percentage to 15% in 2030. Mr. van Dord thought our project was very interesting, since we find a new way to produce bioplastics. However, he was wondering why we would focus on styrene that much. Why not create a new bioplastic with even better qualities? He also stated the business case should be a part in the project in order to get a better insight in the potential of genetically manufactured/engineered bioplastics and the scale of economic feasible production facilities. NRK also put an article about us on their website

Bioclear Earth: Jeroen Tideman (27th July 2018)

We had contact with the employees of BioClear Earth, who gave us great tips on the financial aspects of our project. Because pure cellulose is more expensive than glucose, we needed to find a waste source which we could use in our process. They came up with the idea to use recycled toilet-paper, which can not be used for other purposes duo to its imago. After this, they explained to us how the market for enzymes works, and also brought us into contact with various people in the market. Next to the people from the enzyme field, they told us about various parties who are working on turning cellulose into glucose. Lastly they gave us the tip to use glucose instead of cellulose for our project. However, we thought this was not feasible as we do not want to be regarded as competition to the food industry.

KNN Cellulose: Yme Flapper(31st August 2018)

We've visited KNN Cellulose! After doing a lot of research in possibilities in biomass, we found a company which produces Recell® . This is an innovative new product from recycled toilet paper which consists for more than 90% out of cellulose. They asked us whether there is a possibility if we can use their product to create styrene. This way we really use waste streams to create StyGreen! The company develops biomass chemicals and is looking for new innovative and sustainable ways of production. GMO technology fits this profile. KNN provided us with a sample of their product so we can test, and they are very interested in our results.

Avantium: Ronny Pals (31st August 2018)

On 31.08. Rianne, Jens, Benno, Bram and team associate Tjerk Douma visited the Chemistry Park Delfzijl where we had a meeting with Avantium. Avantium is breaking down wood chips chemically to hemicellulose, glucose and lignin. Their technology furthermore allows them to break down cellulose with acid to glucose monomers in a one pot reaction with high yields while recovering the acid. We are trying to do exactly the same but enzymatically, employing our cellulosome. We agreed to test the suitability of the glucose Avantium made from wood chips for growth medium for s.cerevisiae. Beyond that we learned a lot about the process of valorizing innovations in general. They gave us a lot of insight regarding the financial and technical bottlenecks that stand between a promising idea and a large scale profitable industrial process. We were impressed by Avantiums technology as it is very robust, works with almost any type of wood and requires only very little material preparation, especially in comparison to our enzymatic approach. An important take away for us was therefore that we have to consider the expenses and environmental implications of our cellulose preparation (grinding, autoclaving, phosphorylating) as well, rather than just our yeast growing on cellulose.

BioBTX: Pieter Imhof (25th July 2018)

As suggested by the Science Shop, we got into contact with Pieter Imhof of BioBTX. This company is also making chemical intermediates out of biomass, but this company uses a chemical way of working. They explained to us how they use pyrolysis, and combined this by a catalytic conversion step. This way they were able to reach aromatics yields of approximately 30-70%, with BTX (Benzene, Toluene, Xylene) yields ranging from 5-40%, yielde dependent on feed and process condition used. On our project, Mr. Imhof thought that the process of turning glucose into styrene not have enough yields to be economically feasible. However, he thought the cellulose to glucose step in one pot combined with glucose to styrene could be a interesting improvement. Next to this, he explained that with every chemical step, there is more CO2 emission, the magnitude dependent on reaction conditions. So whereas our method would not be able to have industrial needs, it would likely be greener than the chemical process of refining biomass, and significantly better than fossil based. These steps are bound together in the Life Cycle Analysis, which can be found on the wiki and in given references. Mr. Imhof explained to us that we should not go into deep into this, and gave us great references about their own research.

Fablab: Winand Slingenbergh

As the iGEM team Groningen aims to produce styrene, a plastic monomer, making actual plastic products from our monomer was an obvious idea. As the quantities of styrene we managed to produce are not large enough for industrial applications we found an interesting partner in Fablab Groningen, a 3D printing venture. Fablab is an open-source, global network that originated from an MIT course titled ‘How to make almost anything’ they have stayed true to this ideal and offer a wide variety of plastic and wood working techniques in their laboratories. 3D printing with ABS plastic is possible, but it has some drawbacks, hence we decided to collaborate with Fablab Groningen without actually using StyGreen for 3D printing. We quickly realized that 3D printed biological structures can be of great educational value. Therefore we made prints of the most important enzymes in our project: The cellulose binding domain, the endogluconase, the beta-gluconase and the Phenylalanine Ammonia Lyase. We also printed some of their ligands and matched them size wise to showcase where the pocket with the active site in the enzyme is and which chemical alteration is happening. We also developed a kit of building blocks for styrene, butadiene, acrylnitril and divinylbenzene that can showcase the process of copolymerization through magnets. On top of that our mascot Styrene Steve was 3D printed multiple times and given as present to some of our sponsors as a nice gesture and to keep iGEM in people’s minds. All structures we designed with FabLab are open source and can be found on their website https://www.thingiverse.com/.

ZAP: Drs. R.J. van Linschoten (4th September 2018)

One of the first steps when considering upscaling is finding a suitable location for a pilot plant. The province of Groningen is a strong agricultural and industrial area. Therefore, the province of Groningen can support the conversion of waste streams from biomass in high-end products. ZAP stands for Zernike Advanced Processing. ZAP offers an unique test environment for bio-based experiments in the northern region of the Netherlands, they offer the facilities to setup a pilot plant. ZAP tries to act on the signal that we need to lessen our reliance on fossil fuels. ZAP is an innovation cluster which is located on the Zernike Campus of the University of Groningen, this can lead to a symbiotic relation between the knowledge of the university and the industry of the surrounding area. We met with drs. R.J. van Linschoten, director of the Zernike Advanced Processing, on the 4th of September. With him we discussed the prerequisites for setting up a pilot plant.

Meetings with Experts

Tjerk Douma (28th June 2018)

On the 28th of June we met with Tjerk Douma, who is a Master student in Energy and Environmental Sciences. Tjerk explained to us the importance of a Life Cycle Analysis (LCA), and how everything is taken up in that. For us, it might be interesting to look at the difference in the LCA of StyGreen and oil based Styrene. We agreed that Tjerk would help us with the LCA, and had several more meetings after this.

Drs. Karin Ree (11th July 2018)

Drs. Karin Ree is a member of the Science Shop in Groningen. The Science Shop connects ambitious students to companies who are looking for academic research. As we are looking for the connection to the bioplastic industry, Karin was able to give us great tips on who we should contact. She helped us to find people inside and outside of the university who we could contact. Next to this she has send us a few papers on the sustainability of bioplastics.

Prof. Dr. Gert Jan Euverink (8th August 2018)

Gert Jan Euverink is the University of Groningen representative in the CaDOS project. Toilet paper in sewage material contains roughly 80% cellulose. In the CaDOS project, this cellulose material is used to drain water from the sludge, which improves the purification process. Furthermore, Euverink advises companies on the implementation of their technical ideas. His expertise has been helpful to previous iGEM teams, since he was a supervisor of the winning team of Groningen in 2012!

Prof. Dr. Katja Loos (5th July 2018)

Biodegradable plastics, like PLA, are technically biodegradable but only under controlled conditions. In nature they still take a long time to degrade on their own, only a bit faster than for example polystyrene. However, PLA being “biodegradable” sends a message that it’s okay to throw it away anywhere because it’s “biodegradable”, only adding to the problem. Just recently the EU has moved to ban single use plastics. Therefore what we should do is look into non-single use plastics. While polystyrene also has non-single use applications, the stigma of it being used as disposable packaging material is not easily erased. Some polymers that are nearly always single use include:

  1. Nylons
  2. Polyurethanes
  3. Polyamides
  4. PET
  5. Polymethylmethacrylate (plexiglass)

Prof. Dr. Francesco Picchioni (3rd Oktober 2018)

We went to Francesco Picchioni to ask about his opinion on styrene and our project. Did he see benefit in it, or would he think this was unfeasible? He explained to us that styrene is a very good material for various reasons. The first is that it is transparent, which is why you can color it easily with other chemicals. Also styrene has a aromatic ring and has pi-pi stackings of these rings. This makes that the plastics with styrene have a high TG (Glass Transition Temperature). These connections are way stronger than in PET and PLA, because these have esther connections. No other plastics have these characteristics, and therefore styrene is irreplaceable. Right now, styrene is not recycled very much, as the price is more expensive than making new styrene. However, because styrene is a thermoplastic, it is easily recycled when the market pull would be stronger. Dr. Picchioni was very suprised that styrene was able to be made in a biological way. If this could be created with a high yield, this would be a major discovery and he would be very interested.

"If you can make me a few kilo's, you can come back to me!"

Prof. Dr. A. J. M. Driessen

To gain more insight in optimizing a yeast strain we met with prof. dr. A.J.M. Driessen, head of the molecular microbiology department at the University of Groningen. We discussed how we could best implement and optimize our idea. Prof. dr. Driessen gave us very helpful directions. With the help of his feedback we went from the idea of two separate coexisting yeast strains (one producing glucose from cellulose, and one producing styrene from that glucose), to one yeast strain doing both processes. Also, we discussed multiple knock-outs we could implement to gain higher yields. Finally, prof. dr. Driessen proposed the usage of CRISPR-Cas9 technique to us, to genomically integrate the genes we wanted to introduce, instead of using plasmids. Prof. dr. Driessen brought us in contact important people as well as providing us with additional laboratory space.