Difference between revisions of "Team:NEU China A/Model"

Line 60: Line 60:
 
     }
 
     }
  
.mu-tab-link-highlight {
+
    .image{
    position: absolute;
+
        width: 100%;
    left: 0;
+
        height: 100%;
    bottom: 0;
+
     }
    height: 2px;
+
 
     background-color: #ff4081;
+
    -webkit-transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) 0ms;
+
    -o-transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) 0ms;
+
    transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) 0ms;
+
    will-change: width transform;
+
    -webkit-backface-visibility: hidden;
+
    backface-visibility: hidden;
+
}
+
 
</style>
 
</style>
  
Line 115: Line 107:
 
         <div class="nav-content">
 
         <div class="nav-content">
 
             <ul class="tabs tabs-transparent">
 
             <ul class="tabs tabs-transparent">
                 <li class="tab"><a href="#test1">Test 1</a></li>
+
                 <li class="tab"><a href="#1">Test 1</a></li>
                 <li class="tab"><a href="#test2" class="active">Test 2</a></li>
+
                 <li class="tab"><a href="#2" class="active">Test 2</a></li>
 
                 <li class="tab"><a href="#test3">Disabled Tab</a></li>
 
                 <li class="tab"><a href="#test3">Disabled Tab</a></li>
 
                 <li class="tab"><a href="#test4">Test 4</a></li>
 
                 <li class="tab"><a href="#test4">Test 4</a></li>
Line 122: Line 114:
 
             </ul>
 
             </ul>
 
         </div>
 
         </div>
<div class="mu-tab-link-highlight"></div>
+
        <div class="mu-tab-link-highlight"></div>
  
 
     </nav>
 
     </nav>
Line 226: Line 218:
  
 
<body>
 
<body>
      <div class="container">
+
<div class="container">
        <div class="col s10 offset-s1 m12">
+
    <div class="col s10 offset-s1 m12">
            <div class="card white">
+
        <div class="card white" id="Introduction">
              <div class="card-content">
+
            <div class="card-content">
                  <span class="card-title black-text" style="font-size:2.5em">Introduction</span>
+
                <span class="card-title black-text" style="font-size:2.5em">Introduction</span>
                        <p class="gray-text" style="font-size:1.5em">In the affected area of ​​patients with inflammatory bowel disease, the concentration of nitric oxide is significantly increased, so we chose it as the input signal of our anti-inflammatory device. However, the nitric oxide is very unstable, so we have introduced an amplifier which can converts unstable gas signals into stable intracellular signals for sustained high-level output. The amplifier is based on a positive feedback loop. Transcription activator B-A can self-drive in a manner independent of the input signal for a period of time after the signal is input, and the metabolic flow in this cycle can be transferred to the output circuit (Figure 1). </p>
+
                <p class="gray-text" style="font-size:1.5em">In the affected area of ​​patients with inflammatory bowel disease, the concentration of nitric oxide is significantly increased, so we chose it as the input signal of our anti-inflammatory device. However, the nitric oxide is very unstable, so we have introduced an amplifier which can converts unstable gas signals into stable intracellular signals for sustained high-level output. The amplifier is based on a positive feedback loop. Transcription activator B-A can self-drive in a manner independent of the input signal for a period of time after the signal is input, and the metabolic flow in this cycle can be transferred to the output circuit (Figure 1). </p>
                  <img style="width:100%;height:100%;" src="https://static.igem.org/mediawiki/2018/6/6c/T--NEU_China_A--model_figure1.png"></img>
+
                <img class="image" src="https://static.igem.org/mediawiki/2018/6/6c/T--NEU_China_A--model_figure1.png"/>
              </div>
+
                <h6 style="font-size:2em">Figure 1. Schematic Design of the Synthetic amplifier</h6>
      </div>
+
                <p class="gray-text" style="font-size:1.5em">
 +
                    After the signal is input, the transcriptional activator B-A is generated, which includes a DNA binding domain and a transcriptional activation domain. On the one hand, B-A can activate the expression of the reporter gene, and on the other hand can activate the expression of B-A itself. The constitutively expressed Binder will compete with B-A to suppress the leakage of the device.
 +
                </p>
 +
                <p style="margin-top: 8px;font-size:1.5em">
 +
                    In addition, when using an amplifier based on a positive feedback loop, we need to strictly limit its activation until the input signal is strong enough, which is beneficial to suppress leakage of the device. To this end, we introduce the concept of thresholds, which is to achieve competition between B-A and B by constitutively expressing Binder with a certain intensity (Figure 1). In this way, the amplifier can only be effectively activated when the input signal is strong enough. We established a mathematical model to predict the performance of the amplifier under different restrictions.
 +
                </p>
 +
            </div>
 +
        </div>
 +
        <div class="card white">
 +
            <div class="card-content" id="Assumption">
 +
                <span class="card-title black-text" style="font-size:2.5em">Assumption</span>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    (1) The sequence that B-A and B bind is the same. So, it can be considered that both are combined with the same substrate.
 +
                </p>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    (2) B-A and B have the same promotion or inhibition effect on the amplifier and output circuit.
 +
                </p>
 +
 
 +
            </div>
 +
        </div>
 +
        <div class="card white" id="Symbol Description">
 +
            <div class="card-content">
 +
                <span class="card-title black-text" style="font-size:2.5em">Symbol Description</span>
 +
                <img class="image"
 +
                    src="https://static.igem.org/mediawiki/2018/9/9c/T--NEU_China_A--model_table1.png"/>
 +
                <h6 style="font-size:2em">Table 1. The name and symbol of variable</h6>
 +
            </div>
 +
        </div>
 +
        <div class="card white" id="Fluorescence of GFP with Constant Inflammatory Signal">
 +
            <div class="card-content">
 +
                <span class="card-title black-text" style="font-size:2.5em">
 +
                    Fluorescence of GFP with Constant Inflammatory Signal
 +
                </span>
 +
                <h5 class="black-text">1.Available when the bacterial resources are extremely rich</h5>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    Firstly, the amplifier we described in Figure 1 can be simplified to the Figure 2.
 +
                </p>
 +
                <img class="image"
 +
                    src="https://static.igem.org/mediawiki/2018/thumb/7/77/T--NEU_China_A--model_figure2.png/800px-T--NEU_China_A--model_figure2.png"/>
 +
                <h6 style="font-size:2em">Figure 2. Simple circuit of the amplifier</h6>
 +
                <p>
 +
                    The concentration of the Binder-Activator expressed by the input circuit is
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>P</mi><mn>2</mn></msub>
 +
                            <mo>(</mo>
 +
 
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                            <mo>)</mo>
 +
                        </mrow>
 +
                    </math>
 +
                    when the inflammatory signal is at a concentration of
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
 
 +
                    per unit time. The amount of Binder-Activator or GFP expressed by the amplifier or effector is
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <mtext>P</mtext>
 +
                            <mo>(</mo>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                            <mtext>,</mtext>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                            <mo>)</mo>
 +
                        </mrow>
 +
                    </math>
 +
                    for the Binder-Activator and Binder at a concentration of
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    and
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    , respectively.
 +
                    When the amplifier is used, it can be seen from the Figure 2 that Binder-Activator (
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    ) has two synthetic pathways, one is that the inflammatory signal (
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    ) promotes the synthesis of the input circuit, and the other is that
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    facilitates the synthesis of the amplifier by
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    . So, we can get this equation:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/b/b1/T--NEU_China_A--model_formula1.png">
 +
                    <p>......(1)</p>
 +
                </div>
 +
                <p>
 +
                    There is only one synthetic pathway of y
 +
                    , that is,
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    and
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    work together with the output circuit to release y,
 +
                    so it can be obtained by assumption 2:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/b/b5/T--NEU_China_A--model_formula2.png">
 +
                    <p>......(2)</p>
 +
                </div>
 +
                <h6>
 +
                    Ⅰ.
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>P</mi><mn>1</mn></msub>
 +
                            <mo>(</mo>
 +
 
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                            <mo>)</mo>
 +
                        </mrow>
 +
                    </math>
 +
                    expression solving
 +
                </h6>
 +
                <p>
 +
                    The gene (equivalent to the binding sequence of binder) is abbreviated as G, various transcriptional activators are abbreviated as S, and various transcriptional repressors (e.g. Binder) are abbreviated as I. The binding of
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    to the transcription factor (it means the NorR will be activated to bind the promoter PnorV) of input circuit is a reversible reaction, so the binding reaction of
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    to the input circuit can be expressed as:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/4/41/T--NEU_China_A--model_formula3.png">
 +
                    <p>......(3)</p>
 +
                </div>
 +
                <p>
 +
                    k1 and k2 are the reaction rate constants of the forward reaction and the reverse reaction, respectively.
 +
                    Refer to the Michaelis-Menten equation, we do the following analysis: when the reaction reaches equilibrium, the concentration of SG does not change, that is, the rate of SG generation and decomposition is equal, then we can get the following equation:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/3/31/T--NEU_China_A--model_formula4.png">
 +
                    <p>......(4)</p>
 +
                </div>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/1/19/T--NEU_China_A--model_formula5.png">
 +
                    <p>......(5)</p>
 +
                </div>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/7/7f/T--NEU_China_A--model_formula6.png">
 +
                    <p>......(6)</p>
 +
                </div>
 +
                <p>
 +
                    In fact, the increased rate of transcription of a regulated gene depends on the proportion of genes that bind to a transcriptional activator, and the more genes that bind to a transcriptional activator, the more the rate of expression of the gene increases. The expression of conversion to mathematics is:
 +
                    In fact, the increased rate of transcription of a regulated gene depends on the proportion of genes that bind to a transcriptional activator, and the more transcriptional activators that bind to the gene, the more the rate of expression of the gene increases. The mathematical expression is:
 +
                </p>
 +
 
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/7/7f/T--NEU_China_A--model_formula6.png">
 +
                    <p>......(7)</p>
 +
                </div>
 +
                <p>
 +
                    Suppose that when the substrate concentration is large enough,
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>P</mi><mn>1</mn></msub>
 +
                            <mo>(</mo>
 +
 
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                            <mo>)</mo>
 +
                        </mrow>
 +
                    </math>
 +
                    will take the maximum value, set to
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>P</mi><mn>1max</mn></msub>
 +
 
 +
                        </mrow>
 +
                    </math>
 +
                    , and [S] will also be much larger than [G], so we can get this:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/7/73/T--NEU_China_A--model_formula8.png">
 +
                    <p>......(8)</p>
 +
                </div>
 +
                <p>
 +
                    Bring the formula (6), (8) into equation (7) to get the analytical expression of
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>P</mi><mn>1</mn></msub>
 +
                            <mo>(</mo>
 +
 
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                            <mo>)</mo>
 +
                        </mrow>
 +
                    </math>
 +
                    :
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/1/17/T--NEU_China_A--model_formula9.png">
 +
                    <p>......(9)</p>
 +
                </div>
 +
                <p>
 +
                    Although the body's immune system can make timely adjustments to the inflammatory response,
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    is considered to be a fixed value in a sufficiently short period of time, and
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>P</mi><mn>1</mn></msub>
 +
                            <mo>(</mo>
 +
 
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                            <mo>)</mo>
 +
                        </mrow>
 +
                    </math>
 +
                    can also be considered as a constant that varies with
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    , abbreviated as A. The calculations that follow are handled this way.
 +
                </p>
 +
                <h6>Ⅱ.
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <mtext>P</mtext>
 +
                            <mo>(</mo>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                            <mtext>,</mtext>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                            <mo>)</mo>
 +
                        </mrow>
 +
                    </math>
 +
                    expression analysis
 +
                </h6>
 +
                <p>
 +
                    Since
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    ,
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    binds to the same site in the gene, the gene is activated when
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    binds it while being inhibited when
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    binds it. This can be regarded as the competition between
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    and
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    . Similar to the analysis we used to solve the expression of , we can get:
 +
                </p>
 +
            </div>
 +
        </div>
 +
        <div class="card white" id="">
 +
            <div class="card-content">
 +
                <span class="card-title black-text" style="font-size:2.5em">Symbol Description</span>
 +
                <img class="image"
 +
                    src="https://static.igem.org/mediawiki/2018/9/9c/T--NEU_China_A--model_table1.png"/>
 +
                <h6 style="font-size:2em">Table 1. The name and symbol of variable</h6>
 +
            </div>
 
         </div>
 
         </div>
      </div>
+
    </div>
 +
</div>
 
</body>
 
</body>
  

Revision as of 16:42, 15 October 2018

Introduction

In the affected area of ​​patients with inflammatory bowel disease, the concentration of nitric oxide is significantly increased, so we chose it as the input signal of our anti-inflammatory device. However, the nitric oxide is very unstable, so we have introduced an amplifier which can converts unstable gas signals into stable intracellular signals for sustained high-level output. The amplifier is based on a positive feedback loop. Transcription activator B-A can self-drive in a manner independent of the input signal for a period of time after the signal is input, and the metabolic flow in this cycle can be transferred to the output circuit (Figure 1).

Figure 1. Schematic Design of the Synthetic amplifier

After the signal is input, the transcriptional activator B-A is generated, which includes a DNA binding domain and a transcriptional activation domain. On the one hand, B-A can activate the expression of the reporter gene, and on the other hand can activate the expression of B-A itself. The constitutively expressed Binder will compete with B-A to suppress the leakage of the device.

In addition, when using an amplifier based on a positive feedback loop, we need to strictly limit its activation until the input signal is strong enough, which is beneficial to suppress leakage of the device. To this end, we introduce the concept of thresholds, which is to achieve competition between B-A and B by constitutively expressing Binder with a certain intensity (Figure 1). In this way, the amplifier can only be effectively activated when the input signal is strong enough. We established a mathematical model to predict the performance of the amplifier under different restrictions.

Assumption

(1) The sequence that B-A and B bind is the same. So, it can be considered that both are combined with the same substrate.

(2) B-A and B have the same promotion or inhibition effect on the amplifier and output circuit.

Symbol Description
Table 1. The name and symbol of variable
Fluorescence of GFP with Constant Inflammatory Signal
1.Available when the bacterial resources are extremely rich

Firstly, the amplifier we described in Figure 1 can be simplified to the Figure 2.

Figure 2. Simple circuit of the amplifier

The concentration of the Binder-Activator expressed by the input circuit is P2 ( x1 ) when the inflammatory signal is at a concentration of x1 per unit time. The amount of Binder-Activator or GFP expressed by the amplifier or effector is P ( x2 , x3 ) for the Binder-Activator and Binder at a concentration of x2 and x3 , respectively. When the amplifier is used, it can be seen from the Figure 2 that Binder-Activator ( x2 ) has two synthetic pathways, one is that the inflammatory signal ( x1 ) promotes the synthesis of the input circuit, and the other is that x2 facilitates the synthesis of the amplifier by x3 . So, we can get this equation:

......(1)

There is only one synthetic pathway of y , that is, x2 and x3 work together with the output circuit to release y, so it can be obtained by assumption 2:

......(2)

Ⅰ. P1 ( x1 ) expression solving

The gene (equivalent to the binding sequence of binder) is abbreviated as G, various transcriptional activators are abbreviated as S, and various transcriptional repressors (e.g. Binder) are abbreviated as I. The binding of x1 to the transcription factor (it means the NorR will be activated to bind the promoter PnorV) of input circuit is a reversible reaction, so the binding reaction of x1 to the input circuit can be expressed as:

......(3)

k1 and k2 are the reaction rate constants of the forward reaction and the reverse reaction, respectively. Refer to the Michaelis-Menten equation, we do the following analysis: when the reaction reaches equilibrium, the concentration of SG does not change, that is, the rate of SG generation and decomposition is equal, then we can get the following equation:

......(4)

......(5)

......(6)

In fact, the increased rate of transcription of a regulated gene depends on the proportion of genes that bind to a transcriptional activator, and the more genes that bind to a transcriptional activator, the more the rate of expression of the gene increases. The expression of conversion to mathematics is: In fact, the increased rate of transcription of a regulated gene depends on the proportion of genes that bind to a transcriptional activator, and the more transcriptional activators that bind to the gene, the more the rate of expression of the gene increases. The mathematical expression is:

......(7)

Suppose that when the substrate concentration is large enough, P1 ( x1 ) will take the maximum value, set to P1max , and [S] will also be much larger than [G], so we can get this:

......(8)

Bring the formula (6), (8) into equation (7) to get the analytical expression of P1 ( x1 ) :

......(9)

Although the body's immune system can make timely adjustments to the inflammatory response, x1 is considered to be a fixed value in a sufficiently short period of time, and P1 ( x1 ) can also be considered as a constant that varies with x1 , abbreviated as A. The calculations that follow are handled this way.

Ⅱ. P ( x2 , x3 ) expression analysis

Since x2 , x3 binds to the same site in the gene, the gene is activated when x2 binds it while being inhibited when x3 binds it. This can be regarded as the competition between x2 and x3 . Similar to the analysis we used to solve the expression of , we can get:

Symbol Description
Table 1. The name and symbol of variable