The aim of our project is to build a synthetic organelle based on phase separation as a multifunctional platform. Based on the principle of multivalence and interaction, we fused interactional modules into homo-oligomeric tags (HOTags) to form granules in S. cerevisiae. (Click to see more about Description and Design)
We have built spontaneous and induced synthetic organelles by specific interaction modules, so that we can control the formation process by different ways for demands in biological engineering. Then we characterized the kinetics and properties of synthetic organelles theoretically and experimentally. These results confirm the potential of synthetic organelles in synthetic biology.
It inspired us to propose some specific applications of our synthetic organelles, including organization hub, sensor, and metabolism regulator. We have verified the feasibility of them by loading GFP-nanobody module, ABA sensor module and carotene production module to the whole system.
We believe that our work has reached the medal requirements of demonstration as we have confirmed that our synthetic organelles can be formed in vivo and deliver a range of functions both for engineering and research due to their amazing properties. The concrete demonstration of the whole platform is shown below. You can see more details of experiments and modeling in our Notebook and Modeling
To achieve the aim of building a phase-separation based synthetic organelle platform(SPOT), we must verify that granules can be formed by phase separation in our design. We have used several modules to build different phase separation based organelles and characterize their properties well so we believe that these organelles can perform functions well in proper situations.
We designed a spontaneous phase separation system with SUMO-HOTag3 and SIM-HOTag6 to form synthetic organelles. Modification of proteins by SUMO are recognized by SUMO-interacting motifs termed SIMs (Figure.1A).So SUMO and SIM can combine spontaneously to drive the phase separation process. To verify this design, we constructed yeast strains, that were genomically transferred with SUMO-yEGFP-HOTag3 and SIM-mCherry-HOTag6 (Figure.1B). We observed that granules via the two fluorescence signals, which occurred spontaneously in most yeasts cells under microscope. The images of GFP and mCherry channels merged well, which confirms that the SPOT consists of the two components as we expect(Figure.1C).
Figure1. (A) Structure of SUMO3 and SIM. SIMs bind to a surface patch between the α-helix and a β-sheet of the SUMO protein and extend the β-sheet of SUMO by one additional strand. The SIM either attaches as a parallel or an antiparallel strand to the SUMO β-sheet. Binding is primarily mediated by a stretch of four residues containing 3–4 hydrophobic amino acids (I, V, or L). This core interaction motif is a common property of SIMs. (B) Pattern diagram of SUMO-yeGFP and SIM-mCherry. YeGFP is fused to the C-terminus of SUMO and to the N-terminus of HOTag3, mCherry is fused to the C-terminus of SIM and to the N-terminus of HOTag6. (C)Localization of SUMO-yeGFP and SIM-mCherry. YeGFP is fused to the C-terminus of SUMO and to the N-terminus of HOTag3, mCherry is fused to the C-terminus of SIM and to the N-terminus of HOTag6. Both are under the control of constitutive promoters. Localization of red granules and green granules can be detected under fluorescence microscope. Arrow points to localization of red and green granules.
We wondered whether our synthetic organelles are liquid-like or not. A liquid-like granule is in a more dynamic state, exchanges mass with cytoplasm frequently and then responses to environment rapidly. And the liquid-like property makes organelles more controllable. Moreover, potential function modules perform may perform normally only in a droplet. It’s necessary to find out whether our SPOT were liquid-like or not.
Due to surface tension, a liquid-like droplet should be spherical and can go through rapid rearrangement in FRAP (Fluorescence Recovery After Photo-bleaching).
The 3D-rendered shape of the granules was recorded using a confocal microscope, which showed that the granules are nearly spherical. (Figure.2A) Meanwhile, we used FRAP to measure the rearrangement properties the granule(Figure.2B). After fluorescence quenching, the fluorescence of granules showed a rapid mass exchange which indicates that the granules have rapid mass exchange with the cytoplasm and resemble liquid-like droplets(Figure.2C).
Figure2(A). confocal microscopy images of SPOT consisting of SUMO-HOTag3 and SIM-HOTag6. The shape is nearly spherical.(B)The recovery of fluorescence in SPOT was monitored in FRAP (Fluorescence Recovery After Photo-bleaching). After photobleaching, fluorescence recoveries in eight seconds. Arrow points to photobleaching site. Images were taken for~1min.Scalebar is 1.70μm per unit. (C) Normalized intensity of FRAP. After photobleaching, the fluorescence of droplet1 recoveries about 80% and the fluorescence of droplet2 recoveries about 50%. They both recoveries in about 20 seconds. Movie1 3D-rendered images of SPOT consisting of SUMO-HOtag3 and SIM-HOtag6. The shape is nearly spherical. .
Then we designed a dox-induced synthetic organelle by using Tet07 promoter. To design a dox-inducible SPOT, we constructed strains with SUMO-yEGFP-HOTag3 and SIM-mCherry-HOTag6, while only the later one was controlled by TetO7 promoter. (Figure.3) In a dox-induction experiment, we observed that after adding dox, the concentration of SIM-mCherry-HOTag6 fusion proteins increased gradually and granules appeared relatively abruptly and became larger in the following time. Quantitative analysis of the fluorescence movie was in agreement with the result. Thus, the formation of our SPOT can be controlled at the transcription level, which made us wonder if our synthetic organelles can be coupled with a certain genetic circuit to perform complex functions in cells.
Figure3 (A) Construction of SUMO-yeGFP and SIM-mCherry to prove phase separation can be regulated at the level of gene expression. SUMO-yeGFP is under the control of a constitutive promoter and SIM-mCherry is under the control of Tet07 promoter, an inducible promoter, which can be induced by doxcycline(Dox). (B) Time-lapse fluorescence images of phase separation regulated at the level of gene expression. Before adding dox, only green fluorescence can be detected and it covers the entire cell. After adding dox for 5 hours, localization of red droplet and green droplet can be detected. Arrow points to localization of red and green droplets. Images were taken for ~ 7hr.Scalebar,30μm. (C) Fluorescence intensity of SUMO-yeGFP and SIM-mCherry, proportion of cells with SPOT. In a repeat experiment, after adding dox, red fluorescence intensity increases with time. What’s more, after the expression of SIM-mCherry, proportion of cells with SPOT increases well. .