|
|
Line 89: |
Line 89: |
| <div> | | <div> |
| <h2>Reference</h2> | | <h2>Reference</h2> |
− | <li>[1]Neupert, J., Karcher, D., and Bock, R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression in <i>Escherichia coli</i> Nucleic Acids Res.</li>
| + | |
− | <li>[2]Narberhaus, F., Waldminghaus, T. & Chowdhury, S. RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006).</li>
| + | |
− | <li>[3]Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction Nucleic Acids Res. 31, 3406– 3415(2003)</li>
| + | |
− | <li>[4]M V, Jones K, Barillari C, et al. Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone?[J]. Cell Cycle, 2010, 9(8):1542-1550.</li>
| + | |
− | <li>[5]Chowdhury, S., Maris, C., Allain, F. H. & Narberhaus, F.Molecular basis for temperature sensing by an RNA thermometer. EMBO J. 25, 2487–2497 (2006).</li>
| + | |
− | <li>[6]Rinnenthal, J., Klinkert, B., Narberhaus, F.& Schwalbe, H. Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res. 38, 3834–3847</li>
| + | |
− | <li>[7]Hoynes-O'Connor A, Hinman K, Kirchner L, et al. De novo design of heat-repressible RNA thermosensors in <i>E.coli</i>[J]. Nucleic Acids Research, 2015, 43(12):6166-6179.</li>
| + | |
− | <li>[8]Bouvier,M. and Carpousis,A.J. (2011) A tale of two mRNA degradation pathways mediated by RNase E. Mol. Microbiol., 82,1305–1310.</li>
| + | |
− | <li>[9]Cameron,J.C., Gordon,G.C. and Pfleger,B.F. (2015) Genetic and genomic analysis of RNases in model cyanobacteria. Photosynth.Res., doi:10.1007/s11120–11015–10076–11122.</li>
| + | |
− | <li>[10]Pertzev A V, Nicholson A W. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of <i>Escherichia coli</i> ribonuclease III[J]. Nucleic Acids Research, 2006, 34(13):3708-3721.</li>
| + | |
− | <li>[11]Eshwar A K, Guldimann C, Oevermann A, et al. Cold-Shock Domain Family Proteins (Csps) Are Involved in Regulation of Virulence, Cellular Aggregation, and Flagella-Based Motility in Listeria monocytogenes[J]. Frontiers in Cellular & Infection Microbiology, 2017, 7.</li>
| + | |
− | <li>[12] Yamanaka K, Mitta M, Inouye M. Mutation Analysis of the 5′ Untranslated Region of the Cold Shock cspA mRNA of <i>Escherichia coli</i>[J]. Journal of Bacteriology, 1999, 181(20):6284.</li>
| + | |
− | <li>[13] D G, Azar I, Oppenheim A B. Differential mRNA stability of the cspA, gene in the cold-shock response of <i>Escherichia coli</i>[J]. Molecular Microbiology, 1996, 19(2):241.</li>
| + | |
− | <li>[14]Giuliodori A M, Pietro F D, Marzi S, et al. The cspA, mRNA Is a Thermosensor that Modulates Translation of the Cold-Shock Protein CspA[J]. Molecular Cell, 2010, 37(1):21-33.</li>
| + | |
− | <li>[15] Brierley I, Pennell S, Gilbert R J C. Viral RNA pseudoknots: versatile motifs in gene expression and replication[J]. Nature Reviews Microbiology, 2007, 5(8): 598.</li>
| + | |
| </div> | | </div> |
| </li> | | </li> |