Difference between revisions of "Team:Fudan/Notebook"

Line 142: Line 142:
 
                 <li>
 
                 <li>
 
                     <ul class="collapsible expandable">
 
                     <ul class="collapsible expandable">
                        <li>Navigator on this page</li>
 
 
                         <li>Navigator on wiki</li>
 
                         <li>Navigator on wiki</li>
 
                         <li>
 
                         <li>
Line 268: Line 267:
 
             <div class="container">
 
             <div class="container">
 
                 <!-- side navigator of page content -->
 
                 <!-- side navigator of page content -->
                 <ul id="pageContentNav" class="hide-on-med-and-down z-depth-0">
+
                 <!--<ul id="pageContentNav" class="hide-on-med-and-down z-depth-0">
 
                     <li><a href="https://2018.igem.org/Team:Fudan/InterLab">iGEM interLab</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Fudan/InterLab">iGEM interLab</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Fudan/Notebook">Our notebook</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Fudan/Notebook">Our notebook</a></li>
Line 274: Line 273:
 
                     <li><a href="https://2018.igem.org/Team:Fudan/Protocols">Protocols</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Fudan/Protocols">Protocols</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Fudan/Safety">Safety</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Fudan/Safety">Safety</a></li>
                     <!--
+
                      
 
                     <li class="onThisPageNav"><a href="#section1">General safety concerns</a></li>
 
                     <li class="onThisPageNav"><a href="#section1">General safety concerns</a></li>
 
                     <li class="onThisPageNav"><a href="#section2">Laboratory practice</a></li>
 
                     <li class="onThisPageNav"><a href="#section2">Laboratory practice</a></li>
                     <li class="onThisPageNav"><a href="#section3">Specific safety concerns</a></li>-->
+
                     <li class="onThisPageNav"><a href="#section3">Specific safety concerns</a></li>
                 </ul>
+
                 </ul>-->
                 <main>
+
                 <main style="margin:0">
                     <div id="section1" class="section container scrollspy">
+
                     <div class="section container">
                         <div class="expFigureHolder width80 right-on-med-and-up"> <!-- width20到width80都有 大屏上宽是对应值 在小屏宽度100%;有大屏的右浮动和左浮动right-on-med-and-up和left-on-med-and-up -->
+
                         <h2>Monthly Highlights</h2>
                            <img class="responsive-img" src="https://static.igem.org/mediawiki/2018/4/4b/T--Fudan--model_wyh_2.png">
+
<h3>April</h3>
 +
<ul>
 +
<li>First functional SynNotch constructed
 +
</li><li>Developed a simple testification method of SynNotch—shaking beads linked with antigen
 +
</li><li>Transcription factor and promotor pairs constructed and tested</li>
 +
</ul>
 +
<h3>May</h3>
 +
<ul>
 +
<li>SynNotch leakage problem detection
 +
</li><li>Successfully constructed and tested the first mutated version of SynNotch
 +
</li><li>Started constructing composite promoters for logic gates</li>
 +
</ul>
 +
<h3>June</h3>
 +
<ul>
 +
<li>SynNotch with various extra- and intra-cellular domain construction
 +
</li><li>SynNotch and composite promoter verification in cell</li>
 +
</ul>
 +
<h3>August</h3>
 +
<ul>
 +
<li>Batch construction of plasmids used in “amplifier” and “combiner” layers for all sixteen logic
 +
</li><li>Continual construction and testification of various mutation versions of SynNotch</li>
 +
</ul>
 +
<h3>September</h3>
 +
<ul>
 +
<li>Successfully constructed double-stable cell line of two SynNotch receptors
 +
</li><li>Finished constructing plasmids used in logic gates</li>
 +
</ul>
 +
<h3>August</h3>
 +
<ul>
 +
<li>Parts construction
 +
</li><li>All sixteen logic testification in cell</li>
 +
</ul>
  
                            <p>
 
                                Figure 2. Previous designs with single element are not able to handle transmembrane signal processing task. The input-output relationship of a single element is characterized by Hill Equation, which comes with a 'detection range' defined by Kd and n. When the input range does not match the detection range, the system cannot faithfully represent the on and off of the input.
 
                            </p>
 
 
                        </div>
 
 
                     </div>
 
                     </div>
 
                 </main>
 
                 </main>

Revision as of 11:39, 17 October 2018

Our notebook

...

Our notebook

...

Monthly Highlights

April

  • First functional SynNotch constructed
  • Developed a simple testification method of SynNotch—shaking beads linked with antigen
  • Transcription factor and promotor pairs constructed and tested

May

  • SynNotch leakage problem detection
  • Successfully constructed and tested the first mutated version of SynNotch
  • Started constructing composite promoters for logic gates

June

  • SynNotch with various extra- and intra-cellular domain construction
  • SynNotch and composite promoter verification in cell

August

  • Batch construction of plasmids used in “amplifier” and “combiner” layers for all sixteen logic
  • Continual construction and testification of various mutation versions of SynNotch

September

  • Successfully constructed double-stable cell line of two SynNotch receptors
  • Finished constructing plasmids used in logic gates

August

  • Parts construction
  • All sixteen logic testification in cell

Abstract

Contact-dependent signaling is critical for multicellular biological events, yet customizing contact-dependent signal transduction between cells remains challenging. Here we have developed the ENABLE toolbox, a complete set of transmembrane binary logic gates. Each gate consists of 3 layers: Receptor, Amplifier, and Combiner. We first optimized synthetic Notch receptors to enable cells to respond to different signals across the membrane reliably. These signals, individually amplified intracellularly by transcription, are further combined for computing. Our engineered zinc finger-based transcription factors perform binary computation and output designed products. In summary, we have combined spatially different signals in mammalian cells, and revealed new potentials for biological oscillators, tissue engineering, cancer treatments, bio-computing, etc. ENABLE is a toolbox for constructing contact-dependent signaling networks in mammals. The 3-layer design principle underlying ENABLE empowers any future development of transmembrane logic circuits, thus contributes a foundational advance to Synthetic Biology.