Difference between revisions of "Team:ZJU-China/Hardware"

Line 2: Line 2:
 
<html lang="en">
 
<html lang="en">
 
<head>
 
<head>
<style type="text/css">
 
 
 
 
</style>
 
 
<meta charset="{CHARSET}">
 
<meta charset="{CHARSET}">
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootstrapCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootstrapCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/sponsorCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/sponsorCSS&action=raw&ctype=text/css" />
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/subtitleCSS&action=raw&ctype=text/css" />
 
 
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootstrapJS&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootstrapJS&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/jqueryJS&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/jqueryJS&action=raw&ctype=text/javascript"></script>
<title>Hardware</title>
+
<title>Improve Part</title>
 
<link href="css/font-awesome.min.css" rel="stylesheet">
 
<link href="css/font-awesome.min.css" rel="stylesheet">
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootsnavCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootsnavCSS&action=raw&ctype=text/css" />
  
 
<style type="text/css">
 
<style type="text/css">
 
.cd-horizontal-timeline {
 
box-shadow: 0 0 10px 1px black;
 
-webkit-box-shadow: 0 0 10px 1px black;
 
border: none !important;
 
}
 
 
.cnt_psg {
 
margin-left: 8% !important;
 
width: 92% !important;
 
}
 
 
.psg_subtitle {
 
font-size: .6em !important;
 
}
 
th > p, td > p {
 
text-align: center !important;
 
font-size: .5em !important;
 
}
 
.psg > img {
 
vertical-align: middle;
 
}
 
 
.cnt {
 
min-height: 40%;
 
max-height: 50%;
 
overflow: scroll;
 
}
 
 
.cnt::-webkit-scrollbar{
 
width:4px;
 
height:4px;
 
}
 
.cnt::-webkit-scrollbar-track{
 
background: #f6f6f6;
 
border-radius:2px;
 
}
 
.cnt::-webkit-scrollbar-thumb{
 
background: #aaa;
 
border-radius:2px;
 
}
 
.cnt::-webkit-scrollbar-thumb:hover{
 
background: #747474;
 
}
 
.cnt::-webkit-scrollbar-corner{
 
background: #f6f6f6;
 
}
 
  
 
@font-face {
 
@font-face {
Line 119: Line 66:
  
 
.tl {
 
.tl {
     font-size: 4em !important;
+
     font-size: 5.5em !important;
 
}
 
}
 
.navbar-brand{
 
.navbar-brand{
Line 214: Line 161:
 
}
 
}
 
@media only screen and (max-width:990px){
 
@media only screen and (max-width:990px){
     
 
 
.igem_content_wrapper {
 
.igem_content_wrapper {
 
     width: 200% !important;
 
     width: 200% !important;
Line 424: Line 370:
 
</div>
 
</div>
 
</div>
 
</div>
 
 
 
<!--<div class="topImg" style="background-image: url(img/improve_part.png) ;"></div>-->
 
<!--<div class="topImg" style="background-image: url(img/improve_part.png) ;"></div>-->
 
<div class="title">
 
<div class="title">
Line 484: Line 428:
 
</div>
 
</div>
 
</div>
 
</div>
+
 
<!--<hr />-->
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<!--<div class="topImg" style="background-image: url(img/improve_part.png) ;"></div>-->
 +
<div class="title">
 +
<div class="tl">IMPOROVE PART&nbsp;<h5>OVERVIEW&nbsp;</h5></div>
 +
</div>
 +
<div class="intro">
 +
<p>Currently, T7 promoter is one of the most widely used promoters for expression of heterogenous protein in some E.coli strains such as BL21(DE3). Though the wild-type T7 promoter has proven quite effective, in some cases, we need modified T7 promoters with even higher efficiency of protein expression to meet specific demands. Hence, we tried to transform the wild-type T7 promoter to get modified T7 promoters with increased strength . </p>
 +
</br>
 +
<p>T7 RNA polymerase promoters consist of a highly conserved 23 base-pair sequence that spans the site of the initiation of transcription (+ 1) and extends from -17 to +6. As reported in some papers, the sequence specificty of T7 promoter is so strong that some point mutations between positions -11 and -7 may make T7 promoter fail to work. Thus, with the help of previous research, we carefully chose the site which would be mutated by PCR. These sites mainly distribute in the range from -4 to +6. The sequences of these modified promoters are shown in the Table below.</p>
 +
</br>
 +
</div>
 +
<hr />
 +
<!--<div class="element1">
 +
<h5>Engaging Experts</h5>
 +
<p>High impact projects with consequences affecting whole humanity should always be discussed with professionals from different scientific backgrounds. To meet this goal we talked to theologists, legal professionals, safety representatives, astrophysicists, and experts in the field of medicine, agriculture, information technology and many more. Check out the professionals who shaped our project!</p>
 +
</div>-->
 +
<div class="cnt_psg">
 +
<div class="cnt"></div>
 +
<div class="psg" >
 +
<span class="psg_ttl">Sequences of Modified Promoters</span>
 +
<table class="table">
 +
<thead>
 +
<tr>
 +
<th><span>Part Number</span></th>
 +
<th><span>Sequence(-17~+6)</span></th>
 +
</tr>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td><span>BBa_R0085(wild type)</span></td>
 +
<td><span>TAATACGACTCACTATAGGGAGA</span></td>
 +
</tr>
 +
<tr>
 +
<td><span>BBa_K2721000</span></td>
 +
<td><span>TAATACGACTCACTAT<span style="color: steelblue;">C</span><span></span>G</span><span style="color: steelblue;">C</span><span>G</span><span style="color: steelblue;">GAG</span></td>
 +
</tr>
 +
<tr>
 +
<td><span>BBa_K2721001</span></td>
 +
<td><span>TAATACGACTCACT</span><span style="color: steelblue;">CC</span><span>AG</span><span style="color: steelblue;">CA</span><span>A</span><span style="color: steelblue;">TC</span></td>
 +
</tr>
 +
<tr>
 +
<td><span>BBa_K2721002</span></td>
 +
<td><span>TAATACGACTCACT</span><span style="color: steelblue;">TC</span><span>AG</span><span style="color: steelblue;">C</span><span>GA</span><span style="color: steelblue;">CC</span></td>
 +
</tr>
 +
<tr>
 +
<td><span>BBa_K2721003</span></td>
 +
<td><span>TAATACGACTCAC</span><span style="color: steelblue;">ACG</span><span>AG</span><span style="color: steelblue;">C</span><span>GAGA</span></td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<span class="psg_ttl">Test</span>
 +
<p>To test the function of mutant promoters, we chose the GFP as our reporter. By assessing the absolute fluorescence units(RFU) and OD600, we can conclude the relative strength of all promoters. When the E.coli BL21(DE3) is cultured at the stage of logarithmic phase, we added IPTG to induce the expression of GFP in strains BL21(DE3) for 4 hours. And the result is shown as Figure and Table below.</p>
 +
<img src="https://static.igem.org/mediawiki/2018/5/54/T--ZJU-China--ip01.png" style="width: 80%;"/>
 +
<h5>Fig.1 Relative Strength of wildtype T7 promoter and mutant promoters</h5>
 +
<table class="table">
 +
<thead><tr>
 +
<th><span>Part Number</span></th>
 +
<th><span>Relative Strength</span></th>
 +
</tr></thead>
 +
<tbody>
 +
<tr>
 +
<td><span>BBa_R0085(wild type)</span></td>
 +
<td><span>1</span></td>
 +
</tr>
 +
<tr>
 +
<td><span>BBa_K2721000</span></td>
 +
<td><span>20.99</span></td>
 +
</tr>
 +
<tr>
 +
<td><span>BBa_K2721001</span></td>
 +
<td><span>17.75</span></td>
 +
</tr>
 +
<tr>
 +
<td><span>BBa_K2721002</span></td>
 +
<td><span>7.63</span></td>
 +
</tr>
 +
<tr>
 +
<td><span>BBa_K2721003</span></td>
 +
<td><span>13.92</span></td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<p></br>As we can see from the figure, our mutant promoters showed largely increased strength compared with wild type T7 promoter. Therefore, our mutant promoters offer users more opportunity to control the expression of protein using T7 promoter and permit higher levels of target protein expression to be obtained.</p>
 +
<span class="psg_ttl">References</span>
 +
<p>[1] Ikeda R A, Ligman C M, Warshamana S, et al. T7 promoter contacts essential for promoter activity in vivo[J]. Nucleic Acids Research, 1992, 20(10): 2517-2524.</p>
 +
<p>[2] Paul S, Stang A, Lennartz K, Tenbusch M, Uberla K. Selection of a T7 promoter mutant with enhanced in vitro activity by a novel multi-copy bead display approach for in vitro evolution[J]. Nucleic Acids Research, 2013, 41(1):e29.</p>
 +
<br /><br />
 +
<!---->
 +
 +
<!---->
 +
</div>
 +
<div class="sponsors">
 +
<p class="sponsor_ttl">Our Sponsors</p>
 +
<img src="https://static.igem.org/mediawiki/2018/6/68/T--ZJU-China--home--biolab.png" />
 +
<img src="https://static.igem.org/mediawiki/2018/f/f1/T--ZJU-China--genscript.png" />
 +
<img src="https://static.igem.org/mediawiki/2018/b/b2/T--ZJU-China--home--undergraduate.png" />
 +
<img src="https://static.igem.org/mediawiki/2018/5/5f/T--ZJU-China--foundation.png" />
 +
<img src="https://static.igem.org/mediawiki/2018/7/7f/T--ZJU-China--hospital.png" />
 +
 +
</div>
 +
</div>
 +
        <!--<script type="text/javascript" src="js/bootsnav.js"></script>-->
 
         <script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootnavJS&action=raw&ctype=text/javascript"></script>
 
         <script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/bootnavJS&action=raw&ctype=text/javascript"></script>
 
         <script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageJS&action=raw&ctype=text/javascript"></script>
 
         <script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageJS&action=raw&ctype=text/javascript"></script>
 
</body>
 
</body>
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/pageCSS&action=raw&ctype=text/css" />
<!--<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/NBstyleCSS&action=raw&ctype=text/css" />-->
 
<!--<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/resetCSS&action=raw&ctype=text/css" />-->
 
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/sponsorCSS&action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Team:ZJU-China/sponsorCSS&action=raw&ctype=text/css" />
  
 
</html>
 
</html>

Revision as of 11:47, 17 October 2018

Improve Part
HARDWARE  
ABSTRACT  

We use a 2D printer to print materials onto IDE to modify it. Then we use breadboard to assemble each component and make an entire circuit. The circuit is connected to an iPhone through Bluetooth. We get some blood samples from Sir Run Run Shao Hospital and use them to certify the accuracy of our hardware and enzyme IDE. Everything proves to work fine.



2D printer

The first part is a 2-Demension printer consists of three motors and an arduino uno board that can receive a photo and print it on a plat surface with our special ink. The printer’s main control board is based on a windows application named Steroduino which can nearly translate all kinds of photo into an two-dimension array that will be printed on the surface by the motors with the main control board.

IDE (interdigital electrode) design

IDE (interdigital electrode) is composed of two interdigital electrodes with two connection tracks, on a insulative substrate. IDE is cheaper than normal electrode and can work with low volumes of sample. The interdigitated configuration typically enhances sensitivity and detection limits.


Taking our 2D-printer’s precision into consideration, we design our first generation of IDE (see Fig,1). The black part is 6×interdigital working electrodes, the green part is counter electrode and the red part is reference electrode. We plan to use Au as electrode material and PET as electrode base.

Fig. 1 First generation of IDE


To make it easier to adjust hardware for the above IDE and to print enzyme solution, we modify our IDE and create the second generation of IDE (see Fig.2). We design thicker working electrode and electrical contact, working electrode reaching the thickness of 0.44mm. And 0.48mm gap is left to avoid short circuit. And we separate each pair of interdigital electrode, following the principle of IDE design.

Fig. 2 Second generation of IDE
Integration

To accurately describe the results of protein production, simplify user operations and save time, we developed a complete system consisting of two parts. That is converter and amplifier, reporter.

We connect a Transimpedance Amplifiers together with a Bluetooth module an expansion on arduino nano board.


We printed the ink containing modified enzymes on IDE. IDE’s output ports are connected to the in-port of the second part with a very low electronic current which can accordingly form a voltage big enough that is sufficient to be detected by our detector. The detector is just an arduino nano board with an blueteeth board which, we use analog pin to detect the voltage and using blueteeth board to transfer the data to mobile phone running the WeChat mini-program which can show the data it received by blueteeth. In last part the reporter receives the voltage and transfer them with our algorithm into an actual current value, and then sends processed user-readable results to the applets on the user’s mobile phone. This app is developed in the WeChat Platform, here are some screen shoots in the app.


The hardware implementation not only solves the need to report wet experiment results, but also is much more user friendly, especially for non-professionals.


In order to verify the stability and accuracy, we conducted dozens of tests in the hospital using real blood samples and contacted the experts to evaluate the hardware.



IMPOROVE PART 
OVERVIEW 

Currently, T7 promoter is one of the most widely used promoters for expression of heterogenous protein in some E.coli strains such as BL21(DE3). Though the wild-type T7 promoter has proven quite effective, in some cases, we need modified T7 promoters with even higher efficiency of protein expression to meet specific demands. Hence, we tried to transform the wild-type T7 promoter to get modified T7 promoters with increased strength .


T7 RNA polymerase promoters consist of a highly conserved 23 base-pair sequence that spans the site of the initiation of transcription (+ 1) and extends from -17 to +6. As reported in some papers, the sequence specificty of T7 promoter is so strong that some point mutations between positions -11 and -7 may make T7 promoter fail to work. Thus, with the help of previous research, we carefully chose the site which would be mutated by PCR. These sites mainly distribute in the range from -4 to +6. The sequences of these modified promoters are shown in the Table below.



Sequences of Modified Promoters
Part Number Sequence(-17~+6)
BBa_R0085(wild type) TAATACGACTCACTATAGGGAGA
BBa_K2721000 TAATACGACTCACTATCGCGGAG
BBa_K2721001 TAATACGACTCACTCCAGCAATC
BBa_K2721002 TAATACGACTCACTTCAGCGACC
BBa_K2721003 TAATACGACTCACACGAGCGAGA
Test

To test the function of mutant promoters, we chose the GFP as our reporter. By assessing the absolute fluorescence units(RFU) and OD600, we can conclude the relative strength of all promoters. When the E.coli BL21(DE3) is cultured at the stage of logarithmic phase, we added IPTG to induce the expression of GFP in strains BL21(DE3) for 4 hours. And the result is shown as Figure and Table below.

Fig.1 Relative Strength of wildtype T7 promoter and mutant promoters
Part Number Relative Strength
BBa_R0085(wild type) 1
BBa_K2721000 20.99
BBa_K2721001 17.75
BBa_K2721002 7.63
BBa_K2721003 13.92


As we can see from the figure, our mutant promoters showed largely increased strength compared with wild type T7 promoter. Therefore, our mutant promoters offer users more opportunity to control the expression of protein using T7 promoter and permit higher levels of target protein expression to be obtained.

References

[1] Ikeda R A, Ligman C M, Warshamana S, et al. T7 promoter contacts essential for promoter activity in vivo[J]. Nucleic Acids Research, 1992, 20(10): 2517-2524.

[2] Paul S, Stang A, Lennartz K, Tenbusch M, Uberla K. Selection of a T7 promoter mutant with enhanced in vitro activity by a novel multi-copy bead display approach for in vitro evolution[J]. Nucleic Acids Research, 2013, 41(1):e29.