Difference between revisions of "Team:SJTU-BioX-Shanghai/Safety"

Line 131: Line 131:
 
             <p>The backbone of the practice of biosafety is risk assessment. One of the most helpful tools available for performing a microbiological risk assessment is the listing of risk groups for microbiological agents. However, simple reference to the risk grouping for a particular agent is insufficient in the conduct of a risk assessment. Other factors that should be considered, as appropriate, include:</p>
 
             <p>The backbone of the practice of biosafety is risk assessment. One of the most helpful tools available for performing a microbiological risk assessment is the listing of risk groups for microbiological agents. However, simple reference to the risk grouping for a particular agent is insufficient in the conduct of a risk assessment. Other factors that should be considered, as appropriate, include:</p>
 
             <p><strong>
 
             <p><strong>
1. Pathogenicity of the agent and infectious dose
+
1. Pathogenicity of the agent and infectious dose;
</br>2. Potential outcome of exposure
+
</br>2. Potential outcome of exposure;
</br>3. Natural route of infection
+
</br>3. Natural route of infection;
</br>4. Other routes of infection, resulting from laboratory manipulations (parenteral,
+
</br>4. Other routes of infection, resulting from laboratory manipulations (parenteral,airborne, ingestion);
airborne, ingestion)
+
</br>5. Stability of the agent in the environment;
</br>5. Stability of the agent in the environment
+
</br>6. Concentration of the agent and volume of concentrated material to be manipulated;
</br>6. Concentration of the agent and volume of concentrated material to be manipulated
+
</br>7. Presence of a suitable host (human or animal;
</br>7. Presence of a suitable host (human or animal)
+
 
</br>8. Information available from animal studies and reports of laboratory-acquired
 
</br>8. Information available from animal studies and reports of laboratory-acquired
infections or clinical reports
+
infections or clinical reports;
</br>9. Laboratory activity planned (sonication, aerosolization, centrifugation, etc.)
+
</br>9. Laboratory activity planned (sonication, aerosolization, centrifugation, etc);
 
</br>10. Any genetic manipulation of the organism that may extend the host range of the
 
</br>10. Any genetic manipulation of the organism that may extend the host range of the
agent or alter the agent’s sensitivity to known, effective treatment regimens.
+
agent or alter the agent’s sensitivity to known, effective treatment regimens;
 
</li>
 
</li>
  
  
         <li>c) Biosafety considerations for expression vectors</li>
+
         <li>c) Biosafety considerations for expression vectors
         <li>Point4</li>
+
<p>Higher biosafety levels may be required when:</p>
         <li>Point5</li>
+
<p><strong>
 +
</br>1. The expression of DNA sequences derived from pathogenic organisms may increase the virulence of the GMO;
 +
</br>2. Inserted DNA sequences are not well characterized, e.g. during preparation of genomic DNA libraries from pathogenic microorganisms;
 +
</br>3. Gene products have potential pharmacological activity;
 +
</br>4. Gene products code for toxins;
 +
</li>
 +
         <li>Engineering bacteria
 +
<p></p>
 +
Recombinant DNA technology involves combining genetic material from different
 +
sources thereby creating genetically modified organisms (GMOs) that may have never existed in nature before. Experiments involving the construction or use of GMOs should be conducted after performing a biosafety risk assessment. The properties of the donor organism, the nature of the DNA sequences that will be transferred, the properties of the recipient organism, and the properties of the environment should be evaluated. These factors should help determine the biosafety level that is required for the safe handling of the resulting GMO, and identify the biological and physical containment systems that should be used.
 +
<p><strong>
 +
</li>
 +
         <li>What about biological expression systems?
 +
<p>
 +
Biological expression systems consist of vectors and host cells. A number of criteria must be satisfied to make them effective and safe to use. An example of such a biological expression system is plasmid pUC18. Frequently used as a cloning vector in combination with Escherichia coli K12 cells, the pUC18 plasmid has been entirely sequenced. All genes required for expression in other bacteria have been deleted from its precursor plasmid pBR322. E. coli K12 is a non-pathogenic strain that cannot permanently colonize the gut of healthy humans or animals. Routine genetic engineering experiments can safely be performed in E. coli K12/pUC18 at Biosafety Level 1, provided the inserted foreign DNA expression products do not require higher biosafety levels.
 +
</p><p><strong>
 +
 
 +
</li>
 
         <li>Point6</li>
 
         <li>Point6</li>
 
         <li>Point7</li>
 
         <li>Point7</li>

Revision as of 16:00, 17 October 2018

Biosafety

Biosafety is defined as the real or potential danger to human beings, animals or plants by direct infection or indirect destruction of the environment by biological infectious agents.

Biohazard

  • a) Laboratory safety classification

    The term "laboratory biosafety" is used to describe the protective principles, techniques and practices used to prevent accidental exposure and accidental release of pathogens or toxins.

  • b) Engineering bacterial classification

    The backbone of the practice of biosafety is risk assessment. One of the most helpful tools available for performing a microbiological risk assessment is the listing of risk groups for microbiological agents. However, simple reference to the risk grouping for a particular agent is insufficient in the conduct of a risk assessment. Other factors that should be considered, as appropriate, include:

    1. Pathogenicity of the agent and infectious dose;
    2. Potential outcome of exposure;
    3. Natural route of infection;
    4. Other routes of infection, resulting from laboratory manipulations (parenteral,airborne, ingestion);
    5. Stability of the agent in the environment;
    6. Concentration of the agent and volume of concentrated material to be manipulated;
    7. Presence of a suitable host (human or animal;
    8. Information available from animal studies and reports of laboratory-acquired infections or clinical reports;
    9. Laboratory activity planned (sonication, aerosolization, centrifugation, etc);
    10. Any genetic manipulation of the organism that may extend the host range of the agent or alter the agent’s sensitivity to known, effective treatment regimens;

  • c) Biosafety considerations for expression vectors

    Higher biosafety levels may be required when:


    1. The expression of DNA sequences derived from pathogenic organisms may increase the virulence of the GMO;
    2. Inserted DNA sequences are not well characterized, e.g. during preparation of genomic DNA libraries from pathogenic microorganisms;
    3. Gene products have potential pharmacological activity;
    4. Gene products code for toxins;

  • Engineering bacteria

    Recombinant DNA technology involves combining genetic material from different sources thereby creating genetically modified organisms (GMOs) that may have never existed in nature before. Experiments involving the construction or use of GMOs should be conducted after performing a biosafety risk assessment. The properties of the donor organism, the nature of the DNA sequences that will be transferred, the properties of the recipient organism, and the properties of the environment should be evaluated. These factors should help determine the biosafety level that is required for the safe handling of the resulting GMO, and identify the biological and physical containment systems that should be used.

  • What about biological expression systems?

    Biological expression systems consist of vectors and host cells. A number of criteria must be satisfied to make them effective and safe to use. An example of such a biological expression system is plasmid pUC18. Frequently used as a cloning vector in combination with Escherichia coli K12 cells, the pUC18 plasmid has been entirely sequenced. All genes required for expression in other bacteria have been deleted from its precursor plasmid pBR322. E. coli K12 is a non-pathogenic strain that cannot permanently colonize the gut of healthy humans or animals. Routine genetic engineering experiments can safely be performed in E. coli K12/pUC18 at Biosafety Level 1, provided the inserted foreign DNA expression products do not require higher biosafety levels.

  • Point6
  • Point7
OD OD Optical density .

Section2

xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxxxxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxxxxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx

Section3

xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx. The text-link template is here.

2018 Interlab Plate Reader Protocol
Protocols/Transformation

section4

xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx The figure template is here.

Fig 1. The particle standard curve obtained form the 2nd calibration experiment.

xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx.

The table template is here.

Table 1. Colony forming units per 0.1 OD600

samples dilution factor CFU/mL
8×104 8×105 8×106
1.1 TNTC 48 11 3.84E+07
1.2 248 41 10 3.28E+07
1.3 172 54 5 4.32E+07
2.1 TNTC 143 20 1.14E+08
2.2 TNTC 153 25 1.22E+08
2.3 TNTC 151 18 1.21E+08
3.1 TNTC 119 16 9.52E+07
3.2 TNTC 125 19 1.00E+08
3.3 TNTC 89 18 7.12E+07
4.1 TNTC 209 16 1.67E+08
4.2 TNTC 130 17 1.04E+08
4.3 TNTC 164 10 1.31E+08

Section5

XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX