SAKANAhuman (Talk | contribs) |
SAKANAhuman (Talk | contribs) |
||
Line 170: | Line 170: | ||
<h5 id="res1">1)Creation of KO yeast strains</h5> | <h5 id="res1">1)Creation of KO yeast strains</h5> | ||
<p class="description">At a first step, we worked on creation of KO yeast strains which uptake more sodium and therefore show salt-sensitivity. It is because we need to use salt sensitive yeast strains in order to assess functions of proteins which contribute salt torelance, and also Na+を外に漏らさずため込ませたかったからだ。 | <p class="description">At a first step, we worked on creation of KO yeast strains which uptake more sodium and therefore show salt-sensitivity. It is because we need to use salt sensitive yeast strains in order to assess functions of proteins which contribute salt torelance, and also Na+を外に漏らさずため込ませたかったからだ。 | ||
− | 作り方は<a href="https://2018.igem.org/Team:Kyoto/SpecialMethods"><font color=# | + | 作り方は<a href="https://2018.igem.org/Team:Kyoto/SpecialMethods"><font color=#000000;>Special protocol</font></a>を見てください。 |
Based on Aachen 2017's result, we created ΔNHA1, ΔENA1ΔNHA1,ΔENA1 at first, and 実験を進めるにあたって東北大学の魚住先生にいただいたG19株(ΔENA1,2,3,4)がよく塩を吸収し、高い塩感受性を示すことがわかり、ENA1だけでなく同じタンデムにあるENA2,3,4もノックアウトする方がいいことがわかった。またNHA1をノックアウトすることも塩吸収に貢献していたため、最後にΔENA1,2,5ΔNHA1も作成しました。以下が私たちが作成した変異株です。実験においては、上記のG19株と、渡部先生にいただいた醤油酵母も用いた。 | Based on Aachen 2017's result, we created ΔNHA1, ΔENA1ΔNHA1,ΔENA1 at first, and 実験を進めるにあたって東北大学の魚住先生にいただいたG19株(ΔENA1,2,3,4)がよく塩を吸収し、高い塩感受性を示すことがわかり、ENA1だけでなく同じタンデムにあるENA2,3,4もノックアウトする方がいいことがわかった。またNHA1をノックアウトすることも塩吸収に貢献していたため、最後にΔENA1,2,5ΔNHA1も作成しました。以下が私たちが作成した変異株です。実験においては、上記のG19株と、渡部先生にいただいた醤油酵母も用いた。 | ||
<ul class="strain"> | <ul class="strain"> |
Revision as of 16:30, 17 October 2018
1)Creation of KO yeast strains
At a first step, we worked on creation of KO yeast strains which uptake more sodium and therefore show salt-sensitivity. It is because we need to use salt sensitive yeast strains in order to assess functions of proteins which contribute salt torelance, and also Na+を外に漏らさずため込ませたかったからだ。 作り方はSpecial protocolを見てください。 Based on Aachen 2017's result, we created ΔNHA1, ΔENA1ΔNHA1,ΔENA1 at first, and 実験を進めるにあたって東北大学の魚住先生にいただいたG19株(ΔENA1,2,3,4)がよく塩を吸収し、高い塩感受性を示すことがわかり、ENA1だけでなく同じタンデムにあるENA2,3,4もノックアウトする方がいいことがわかった。またNHA1をノックアウトすることも塩吸収に貢献していたため、最後にΔENA1,2,5ΔNHA1も作成しました。以下が私たちが作成した変異株です。実験においては、上記のG19株と、渡部先生にいただいた醤油酵母も用いた。
- ・ΔNHA1
- ・ΔENA1ΔNHA1
- ・ΔENA1
- ・ΔENA1,2,5ΔNHA1
2)Plasmid construction
次に、私たちはプラスミドのコンストラクションを行いました。デザインページにあるように、塩耐性のためにMangrin, ZrGPD1,ZrFPS1を、塩の回収のためにAtHKT1,AVP1, AtNHXS1, SseNHX1の作成をしました。
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
3)Assesment of halotorelance
4)Assesment of the amount of absorbing Na+
5)Assesment of aggregation
2) title title title title title title title
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
caption caption caption caption caption
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
Figure 2-c caption caption caption caption caption
Figure 2-d caption caption caption caption caption
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text (Figure 2-e).
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
6) Improve transport of mRNA to cytosol
As shown in the figure (Figure 6-a), the diameter of the stylet is very small, about a fraction of a single cell of yeast. For this reason, B. xylophilus seemed to draw out the cytoplasmic fraction, but large cellular componentns such as the nucleus may not be efficiently consumed by B. xylophilus.
As expected, when U6-RRE is injected together with buffer without Rev, U6-RRE remains in the nucleus, whereas U6 - RRE is injected with buffer containing Rev, U6-RRE was remarkably transported outside the nucleus. This result demonstrated that nuclear export of RNA is promoted depending on both the RRE sequence and the Rev protein in the case of U6 RNA originally staying in the nucleus. These effects indicate that these parts are promising as devices for efficiently transporting highly structured RNA, which is often used in synthetic biology, to the cytoplasm.(BBa_K2403000
BBa_K2403002)
Unfortunately, transcription products of GFP-RRE were too thin to understand whether they responded to Rev. However, from the figure on the right of Figure 6-f, it was also found that dsRNA remained in the nucleus a lot. It is suggested that implementation of a system to promote nucleocytoplasmic transport is effective.
Compared to the signal at T = 0, since many signals are lost at 60 minutes after injection, there may be a mechanism for degrading dsRNA in cells. In addition to promoting transportation efficiency, there will be room for improvement to improve stability.
This is the Result obtained in this project. We would like to discuss Discussion on interpretation of Result and Future plan.
Reference
- [1] X. rong Wang, X. Cheng, Y. dong Li, J. ai Zhang, Z. fen Zhang, and H. rong Wu, “Cloning arginine kinase gene and its RNAi in Bursaphelenchus xylophilus causing pine wilt disease,” Eur. J. Plant Pathol., vol. 134, no. 3, pp. 521–532, 2012.
- [2] A. Sigova, N. Rhind, and P. D. Zamore, “A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe,” genes Dev., 2004.
- [3] R. Esteban and R. B. Wickner, “A new non-mendelian genetic element of yeast that increases cytopathology produced by M1 double-stranded RNA in ski strains.,” Genetics, 1987.
- [4] M. T. B. Sloan, Katherine E, Pierre-Emmanuel Gleizes, “Nucleocytoplasmic Transport of RNAs and RNA–Protein Complexes,” J. Mol. Biol., vol. 428, no. 10, pp. 2040–2059, 2016.
- [5] V. W. Pollard and M. H. Malim, “the Hiv-1 Rev Protein,” Annu. Rev. Microbiol., vol. 52, no. 1, pp. 491–532, 1998.