Difference between revisions of "Team:HZAU-China/Basic Part"

Line 794: Line 794:
 
                 <p>Pyroptosis is a form of lytic programmed cell death with inflammation. Recent studies reported that the N-terminal of GSDMD acts as an effector of pyroptosis. Full length GSDMD (GSDMD FL) is cleaved by Caspase 1, releasing the pore-forming domain (GSDMD-N275), which can oligomerize and make pores on the cell membrane. Formation of pores causes cell to swell, leading to membrane rupture and massive leakage of cytosolic contents<sup>1</sup>.</p>
 
                 <p>Pyroptosis is a form of lytic programmed cell death with inflammation. Recent studies reported that the N-terminal of GSDMD acts as an effector of pyroptosis. Full length GSDMD (GSDMD FL) is cleaved by Caspase 1, releasing the pore-forming domain (GSDMD-N275), which can oligomerize and make pores on the cell membrane. Formation of pores causes cell to swell, leading to membrane rupture and massive leakage of cytosolic contents<sup>1</sup>.</p>
 
                 <div class="h2">The N-terminal of GSDMD execute the function of pyroptosis in cells</div>
 
                 <div class="h2">The N-terminal of GSDMD execute the function of pyroptosis in cells</div>
                 <p>We fused eGFP with GSDMD-N275 and GSDMD FL (full length) respectively. Then the corresponding plasmids were transfected into Hela GSDMD KO cell. Cell microscopy showed that the cells transfected with GSDMD-N275 underwent pyroptosis while the cells with GSDMD FL did not (<b>Figure 1</b>). We also tested the cell viability through an ATP assay (CellTiter-Glo<sup>®</sup> Luminescent Cell Viability Assay) and demonstrated that GSDMD-N275 and mutants of GSDMD FL have different ability to induce pyroptosis (<b>Figure 2</b>).</p>
+
                 <p>We fused eGFP with GSDMD-N275 and GSDMD FL (full length) respectively. Then the corresponding plasmids were transfected into Hela GSDMD KO cell. Cell microscopy showed that the cells transfected with GSDMD-N275 underwent pyroptosis while the cells with GSDMD FL did not (<b>Figure 1</b>). We also tested the cell viability through an ATP assay (CellTiter-Glo<sup>®</sup> Luminescent Cell Viability Assay) and demonstrated that GSDMD-N275 and mutants of GSDMD FL have different abilities to induce pyroptosis (<b>Figure 2</b>).</p>
 
                 <div style="width: 100%; margin: 30px auto">
 
                 <div style="width: 100%; margin: 30px auto">
 
                     <img src="https://static.igem.org/mediawiki/2018/d/d7/T--HZAU-China--basicPart1.png.png" width="100%" alt="">
 
                     <img src="https://static.igem.org/mediawiki/2018/d/d7/T--HZAU-China--basicPart1.png.png" width="100%" alt="">
Line 854: Line 854:
 
                 <div class="h2">The N-terminal of GSDMD lyses bacteria</div>
 
                 <div class="h2">The N-terminal of GSDMD lyses bacteria</div>
 
                 <p>Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) in <i>Salmonella enterica</i> serovar Typhimurium str. SL1344 <i>ΔsifA</i>
 
                 <p>Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) in <i>Salmonella enterica</i> serovar Typhimurium str. SL1344 <i>ΔsifA</i>
                     is under the control of P<sub>tet</sub>. The colony-forming unit (CFU) was measured for counting the number of viable bacteria (<b>Figure 3</b>).  
+
                     is under the control of P<sub>tet</sub>. The colony-forming unit (CFU) was measured for counting the number of viable bacterial cells (<b>Figure 3</b>).  
 
                     This result shows that eGFP-GSDMD-N275 exhibits cytotoxicity in bacteria.</p>
 
                     This result shows that eGFP-GSDMD-N275 exhibits cytotoxicity in bacteria.</p>
 
                 <div style="width: 30%; margin: 30px auto">
 
                 <div style="width: 30%; margin: 30px auto">
Line 861: Line 861:
 
                 <p><b>Figure 3.</b> CFU comparison between the SL1344 <i>ΔsifA</i> cells with eGFP-GSDMD-N275 plasmid and with the empty vector.
 
                 <p><b>Figure 3.</b> CFU comparison between the SL1344 <i>ΔsifA</i> cells with eGFP-GSDMD-N275 plasmid and with the empty vector.
 
                     In each group, anhydrotetracycline (ATc) (15μg/ml) was added into medium when bacteria grown to logarithmic phase (OD = 0.6~0.8).  
 
                     In each group, anhydrotetracycline (ATc) (15μg/ml) was added into medium when bacteria grown to logarithmic phase (OD = 0.6~0.8).  
                     Vector refers to bacteria containing a high copy number plasmid which only express TetR under the control of P<sub>tet</sub> .  
+
                     Vector refers to bacterium containing a high copy number plasmid which only express TetR under the control of P<sub>tet</sub> .  
                     Bacterial colony-forming units (CFU) for vector and eGFP-GSDMD-N275 are shown in the logarithmic form (log10) (n=3). </p>
+
                     CFU for vector and eGFP-GSDMD-N275 are shown in the logarithmic form (log10) (n=3). </p>
 
                 <div class="collapseDiv">
 
                 <div class="collapseDiv">
 
                     <label for="zhedie-toggle3">Method</label>
 
                     <label for="zhedie-toggle3">Method</label>
Line 880: Line 880:
 
                 <p>Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) is under the control of tet promoter in <i>ΔsifA</i> SL1344.  
 
                 <p>Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) is under the control of tet promoter in <i>ΔsifA</i> SL1344.  
 
                     Hela GSDMD KO cells were infected with <i>ΔsifA</i> SL1344. Inducer ATc (16μg/mL) were added 3h after infection.  
 
                     Hela GSDMD KO cells were infected with <i>ΔsifA</i> SL1344. Inducer ATc (16μg/mL) were added 3h after infection.  
                     Microscopy shows that eGFP-GSDMD-N275 locates in cytoplasm after 5 min of induction and trigger pyroptosis after 30 min of induction (<b>Figure 4</b>).
+
                     Microscopy shows that eGFP-GSDMD-N275 locates in cytoplasm after 5 min of induction and triggered pyroptosis after 30 min of induction (<b>Figure 4</b>).
                     After 1.5 h of induction, Hela GSDMD KO cells undergo second necrosis caused by bacterial infection without inducer.
+
                     After 1.5 h of induction, Hela GSDMD KO cells underwent second necrosis caused by bacterial infection without inducer.
 
                       Morphology of this process is similar to pyroptosis<sup>2</sup>. Thus, the population of ruptured cells was counted.  
 
                       Morphology of this process is similar to pyroptosis<sup>2</sup>. Thus, the population of ruptured cells was counted.  
                       There is 2-fold change between control group and induced group (<b>Figure 5</b>).  
+
                       There is 1.96fold change between control group and induced group (<b>Figure 5</b>).  
 
                       So the pyroptosis of host cell in the induced group was triggered by eGFP-GSDMD-N275 not by bacterial infection.
 
                       So the pyroptosis of host cell in the induced group was triggered by eGFP-GSDMD-N275 not by bacterial infection.
  

Revision as of 16:46, 17 October 2018

​​​
N-terminal of Gasdermin D (1-275aa)

Pyroptosis is a form of lytic programmed cell death with inflammation. Recent studies reported that the N-terminal of GSDMD acts as an effector of pyroptosis. Full length GSDMD (GSDMD FL) is cleaved by Caspase 1, releasing the pore-forming domain (GSDMD-N275), which can oligomerize and make pores on the cell membrane. Formation of pores causes cell to swell, leading to membrane rupture and massive leakage of cytosolic contents1.

The N-terminal of GSDMD execute the function of pyroptosis in cells

We fused eGFP with GSDMD-N275 and GSDMD FL (full length) respectively. Then the corresponding plasmids were transfected into Hela GSDMD KO cell. Cell microscopy showed that the cells transfected with GSDMD-N275 underwent pyroptosis while the cells with GSDMD FL did not (Figure 1). We also tested the cell viability through an ATP assay (CellTiter-Glo® Luminescent Cell Viability Assay) and demonstrated that GSDMD-N275 and mutants of GSDMD FL have different abilities to induce pyroptosis (Figure 2).

Figure 1. Microscopy of the Hela GSDMD KO cells transfected with pCS2-eGFP-GSDMD FL and pCS2-eGFP-GSDMD-N275, respectively. Pyroptotic cells are pointed by red arrow.

Preparation of Cells for transfection
1. Grow Hela GSDMD KO cells in a humidified 37℃, 5% CO2 tissue-culture incubator.
2. Count the cells using a hemocytometer. Seed in 24-well (5×10^4 per well) and grow.
Transfection
1. Dilute 0.5 μg DNA into 50 μl jetPRIME® buffer (supplied). Mix by vortexing.
2. Add 1 μl jetPRIME®, vortex for 10 s, spin down briefly.
3. Incubate for 10 min at RT.
4. Add 50μl of transfection mix per well drop wise onto the cells in serum containing medium, and distribute evenly.
5. Gently rock the plates back and forth and from side to side.
6. If needed, replace transfection medium after 4 h by cell growth medium and return the plates to the incubator.
Observation is taken after 1.5 h

Figure 2. Cell viability of the 293T cells transfected with pCS2-Flag-GSDMD FL, pCS2-Flag-GSDMD-N275, pCS2-Flag-GSDMD L290D, pCS2-Flag-GSDMD Y373D and pCS2-Flag-GSDMD A377D, respectively. Asterisks indicate the statistically significant differences. ATP-based cell viability was measured (n=6).

Preparation of Cells for Infection
1. Grow Hela GSDMD KO cells in a humidified 37℃, 5% CO2 tissue-culture incubator.
2. Count the cells using a hemocytometer. Seed in 24-well (9×10^4 per well) and grow overnight.
Preparation of Bacteria
1. Grow bacteria overnight 16 h in 2 mL LB in a 15-mL tube. Incubate at 37℃ in a shaking incubator (200 rpm).
2. Subculture bacteria by transferring 300 μL of the overnight culture into 5 mL of LB in a loosely capped 50-mL tube. Incubate at 37℃ in a shaking incubator (200 rpm) to late log phase.
3. Pellet 1 mL of the Salmonella subculture by centrifugation at 1,000×g in a microfuge for 2 min at room temperature.
4. Remove 900 μL of supernatant and gently resuspend the pellet in 900 μL PBS.
Infection
1. Aspirate media and rinse the monolayer twice with PBS.
2. Inoculate cells with bacteria (MOI = 100) by adding bacteria directly to the cell-culture supernatant.
3. Incubate for 3 h at 37℃ in 5% CO2.
4. Aspirate media and rinse the monolayer twice with PBS.
5. Add fresh GM containing 100 μg/mL gentamicin and incubate at 37℃ in 5% CO2.
Observation is taken after 2 h.

The N-terminal of GSDMD lyses bacteria

Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) in Salmonella enterica serovar Typhimurium str. SL1344 ΔsifA is under the control of Ptet. The colony-forming unit (CFU) was measured for counting the number of viable bacterial cells (Figure 3). This result shows that eGFP-GSDMD-N275 exhibits cytotoxicity in bacteria.

Figure 3. CFU comparison between the SL1344 ΔsifA cells with eGFP-GSDMD-N275 plasmid and with the empty vector. In each group, anhydrotetracycline (ATc) (15μg/ml) was added into medium when bacteria grown to logarithmic phase (OD = 0.6~0.8). Vector refers to bacterium containing a high copy number plasmid which only express TetR under the control of Ptet . CFU for vector and eGFP-GSDMD-N275 are shown in the logarithmic form (log10) (n=3).

1. Cell are cultured overnight in LB broth containing corresponding antibiotics, and dilute each 1 volume overnight cultures with 100 volume fresh LB containing antibiotics. Culture in 37℃ 200 rpm.
2. When OD reaching to 0.6-0.8, add anhydrotetracycline with final concentration of 15μg/ml to induce the expression of EGFP-GSDMD-N275.
3. Take 100 μl diluted culture to plate on LB agar plates containing appropriate concentration of antibody after 1.5 hours of induce.
Observation is taken overnight.

The N-terminal of GSDMD from lytic bacteria induce cell pyroptosis

Expression of the N-terminal of GSDMD fused with eGFP (eGFP-GSDMD-N275) is under the control of tet promoter in ΔsifA SL1344. Hela GSDMD KO cells were infected with ΔsifA SL1344. Inducer ATc (16μg/mL) were added 3h after infection. Microscopy shows that eGFP-GSDMD-N275 locates in cytoplasm after 5 min of induction and triggered pyroptosis after 30 min of induction (Figure 4). After 1.5 h of induction, Hela GSDMD KO cells underwent second necrosis caused by bacterial infection without inducer. Morphology of this process is similar to pyroptosis2. Thus, the population of ruptured cells was counted. There is 1.96fold change between control group and induced group (Figure 5). So the pyroptosis of host cell in the induced group was triggered by eGFP-GSDMD-N275 not by bacterial infection.

Figure 4. Hela GSDMD KO cells were infected with ΔsifA SL1344 containing high copy number plasmids which express eGFP-GSDMD-N275 under the control of ATc. Photos were captured 5 min, 30min, 1.5h after induction, respectively.

Figure 5. Numbers of pyroptotic cells before and after ATc induction. Ruptured cells in a field of view were counted.

Preparation of Cells for Infection
1. Grow Hela GSDMD KO cells in a humidified 37℃, 5% CO2 tissue-culture incubator.
2. Count the cells using a hemocytometer. Seed in 24-well (5×10^4 per well) and grow overnight.
Preparation of Bacteria
1. Grow bacteria overnight 16 h in 2 mL LB in a 15-mL tube. Incubate at 37℃ in a shaking incubator (200 rpm).
2. Subculture bacteria by transferring 300 μL of the overnight culture into 5 mL of LB in a loosely capped 50-mL tube. Incubate at 37℃ in a shaking incubator (200 rpm) to late log phase.
3. Pellet 1 mL of the Salmonella subculture by centrifugation at 1,000×g in a microfuge for 2 min at room temperature.
4. Remove 900 μL of supernatant and gently resuspend the pellet in 900 μL PBS.
Infection
1. Aspirate media and rinse the monolayer twice with PBS.
2. Inoculate cells with bacteria (MOI = 100) by adding bacteria directly to the cell-culture supernatant.
3. Incubate for 2 h at 37℃ in 5% CO2.
4. Aspirate media and wash.
5. Add fresh GM containing 100 μg/mL gentamicin and 16 μg/mL ATc incubate at 37℃ in 5% CO2.
Observation is taken after 5 min, 30 min, 1.5 h.

Basic Part Table
Name Type Description Designer Length(bp)
BBa_K2632002 Promoter Promoter sifA Mo Qiqin 331
BBa_K2632003 Coding N-terminal of GasderminD (1-275aa) Zhujun Xia 825
BBa_K2632004 Coding Full length Gasdermin D Zhujun Xia 1455
BBa_K2632005 Coding L290D mutant of full length Gasdermin D Zhujun Xia 1455
BBa_K2632007 Coding A377D mutant of full length Gasdermin D. Zhujun Xia 1455
Reference

1 Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111-116, doi:10.1038/nature18590 (2016).

2 He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell research 25, 1285-1298, doi:10.1038/cr.2015.139 (2015).

Basic Part

N-terminal of Gasdermin D

Basic Part Table

Back to Top
Composite Part