Line 118: | Line 118: | ||
</p> | </p> | ||
</div> | </div> | ||
− | <div class="column | + | <div class="column half_size"> |
<img src="https://static.igem.org/mediawiki/2018/5/56/T--SCUT-ChinaA--modelresult.jpg"> | <img src="https://static.igem.org/mediawiki/2018/5/56/T--SCUT-ChinaA--modelresult.jpg"> | ||
</div> | </div> |
Revision as of 19:34, 17 October 2018
Abstract
To improve the efficiency of producing limonene, we build a model to help us design our genetic machine. We use flux balance analysis to simulate our system, with the matrix of the pathway and the \(V_{max}\) (calculated by \(k_{cat}\) and \(E_t\) ) of each reactions. And, inspired of machine learning algorithms, we established an algorithm using gradient descent method to search for the optimal solution of \(E_t\). Finally, we got results that were close to the results on some published articles we read, and hence we decided to design our experiment based on the model. Also, while building our model, we have developed a software tool which may be helpful for those who need to optimize a pathway.
Flux Balance Analysis
Flux balance analysis is a method to calculate the flow of metabolites through a metabolic network. It assumes that under steady state, the concentration of each metabolite remains unchanged, and the reaction rate satisfies a certain distribution.
The first step we did was to convert the pathway into a mathematical form, a matrix \(S\) .
$$S= \left[ \begin{matrix} & v1 & v2 & v3 & v4 & v5 & v6 & v7 & v8 & v9 & b1 & b2 \\ Acetyl-CoA & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ Acetoacetyl-CoA & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ HMG-CoA & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ Mevalonate & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ Mevalonate-5-phosphate & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ Mevalonate-diphosphate & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ IPP & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 0 & 0 \\ DMAPP & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ NPP & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ \end{matrix} \right]\tag{001} $$
Then we use flux balance analysis to maximize \( f=c^t v\) with constrains, where \(f\) is our objective function, and \(c\) is a vector of zeros with a one at the last reaction, \(b2\) , and \(v\) represents for the flux through all of the reactions.
And we use M-M equation to calculate \( V_{max}\):
We found \(k_{cat}\) (Turnover Number) from brenda-enzymes:
enzyme | Substrate | Turnover Number [1/s] | KM Value [mM] |
---|---|---|---|
ERG10 | acetyl-CoA | 2.1 | 0.33 |
ERG13 | acetoacetyl-CoA, acetyl-CoA | 4.6 | acetoacetyl-CoA:0.0014, acetyl-CoA:0.05 |
HMG1 | hydroxymethylglutaryl-CoA | 0.023 | 0.045 |
ERG12 | mevalonate | 2.36 | 0.012 |
ERG8 | phosphomevalonate | 3.4 | 0.0042 |
ERG19 | (R,S)-5-diphosphomevalonate | 5.9 | 0.0091 |
NDPS1 | isopentenyl diphosphate | 0.14 | 0.047 |
Gradient Descent Method
Inspired by some machine learning methods, we established an algorithm using gradient descent method and innovatively combined it with flux balance analysis. We calculated the gradients of \(f\) on \(E_t\), and searched for the best length of step on the gradient, to improve \(f\). And we have repeat for 10 times to get the results.
Results
This is the result we got after running our model.
From the figure we can see that the priority of enzymes are: HMG1->NDPS1->ERG10->ERG12. For NDPS1 is the enzyme which will be put into the Y. lipolytica and ERG10 shares the substrate with ERG13, we finally decided to overexpress HMG1 and ERG12.