Kristinazu (Talk | contribs) |
Kristinazu (Talk | contribs) |
||
Line 140: | Line 140: | ||
</div> | </div> | ||
<p> | <p> | ||
− | The genome modifications were then carried according to | + | The genome modifications were then carried according to <a href="https://2018.igem.org/Team:Vilnius-Lithuania/Protocols">Protocols</a> our protocol. Although cPCR gave us mixed results, we could not verify any colonies that afterwards grew on our selected marker antibiotics, and thus could not continue our experiments with them. It appears most likely that the genome modifications were not entirely successful, due to the somewhat unstable nature of the ligated linear DNA used for the donor sequence. |
</p> | </p> | ||
<p></p> | <p></p> | ||
Line 214: | Line 214: | ||
<p></p> | <p></p> | ||
<p> | <p> | ||
− | RNA thermometers are RNA-based genetic control tools that react to temperature changes<sup>1</sup>. Low temperatures keep the mRNA at a conformation that masks the ribosome binding site within the 5’ end untranslated region (UTR). Masking of the Shine-Dalgarno (SD) sequence restricts ribosome binding and subsequent protein-translation. Higher temperatures melt the hairpins of RNA secondary structure allowing the ribosomes to access SD sequence to initiate translation <sup>1</sup>. In terms of applicability of RNA thermometers in <var>in vitro</var> systems, they display certain advantages over ribo- or toehold switches: they do not require binding of a ligand, metabolite or trigger RNA to induce the conformational change<sup>2,3</sup>, therefore are especially compatible with our liposome IVTT system. Keeping that in mind we have explored literature <sup>1,4</sup> and found five different RNA thermoswitches that we decided to test and build into our system in order to delay the translation of fusion construct bearing beta-barrel membrane protein. Furthermore, understanding the importance of expanding the library of well characterized and widely-applicable biobricks, we have <var>de novo</var> designed (<a href= | + | RNA thermometers are RNA-based genetic control tools that react to temperature changes<sup>1</sup>. Low temperatures keep the mRNA at a conformation that masks the ribosome binding site within the 5’ end untranslated region (UTR). Masking of the Shine-Dalgarno (SD) sequence restricts ribosome binding and subsequent protein-translation. Higher temperatures melt the hairpins of RNA secondary structure allowing the ribosomes to access SD sequence to initiate translation <sup>1</sup>. In terms of applicability of RNA thermometers in <var>in vitro</var> systems, they display certain advantages over ribo- or toehold switches: they do not require binding of a ligand, metabolite or trigger RNA to induce the conformational change<sup>2,3</sup>, therefore are especially compatible with our liposome IVTT system. Keeping that in mind we have explored literature <sup>1,4</sup> and found five different RNA thermoswitches that we decided to test and build into our system in order to delay the translation of fusion construct bearing beta-barrel membrane protein. Furthermore, understanding the importance of expanding the library of well characterized and widely-applicable biobricks, we have <var>de novo</var> designed (<a href=https://2018.igem.org/Team:Vilnius-Lithuania/Model</a>) six completely unique heat-inducible RNA thermometers. |
</p> | </p> | ||
<p></p> | <p></p> | ||
Line 253: | Line 253: | ||
<p></p> | <p></p> | ||
<p> | <p> | ||
− | As described in other sections of the Design and results page (<a href= | + | As described in other sections of the Design and results page (<a href=https://2018.igem.org/Team:Vilnius-Lithuania/Design), beta-barrel bearing proteins are assembled into the membrane by the BAM protein complex machinery. The key protein BamA is itself a membrane protein, whose folding and insertion into membrane where it helps assemble target proteins, last up to two hours. In order to prevent the aggregation of our fusion proteins after encapsulating their gene-bearing plasmids and purified BamA mRNA into liposomes, we needed to develop a modulatory regulatory tool to lock the translation of our membrane proteins to allow enough time for the encapsulated BamA to fold and insert into the liposome membrane. |
</p> | </p> | ||
<p> | <p> |
Revision as of 23:17, 17 October 2018
Design and Results
Results
Cell-free, synthetic biology systems open new horizons in engineering biomolecular systems which feature complex, cell-like behaviors in the absence of living entities. Having no superior genetic control, user-controllable mechanisms to regulate gene expression are necessary to successfully operate these systems. We have created a small collection of synthetic RNA thermometers that enable temperature-dependent translation of membrane proteins, work well in cells and display great potential to be transferred to any in vitro protein synthesis system.